GPS Solutions

, Volume 16, Issue 1, pp 1–7 | Cite as

Artificial ionospheric wave number 4 structure below the F2 region due to the Abel retrieval of radio occultation measurements

  • Xinan Yue
  • William S. Schreiner
  • Christian Rocken
  • Ying-Hwa Kuo
  • Jiuhou Lei
Original Article

Abstract

We analyzed the effect of the Abel inversion on the wave number 4 (WN4) structure from the GPS radio occultation (RO)–measured electron densities by using the FORMOSAT-3/COSMIC (F-3/C) observations under the equinox condition. The Abel-retrieved electron density from both the F-3/C observations and the simulated results by an empirical model with an imposed WN4 structure in the F layer are investigated. It is found that the Abel inversion can reproduce the real WN4 structure well in the F2 layer. However, it will result in pseudo and reversed-phase WN4 structure in the lower altitude (F1 and E layers). Quantitatively, relative ±15% WN4 signature in the F2 layer can produce ±40% artificial WN4 in the E and F1 layers. Analysis on the F-3/C data shows about ±15% WN4 signature in the F2 layer and ±50% WN4 with reversed-phase in the E and F1 layers. The F-3/C-observed WN4 structure in the E and F1 layers might be the combinations of the real WN4 signature and the artificial effects of Abel retrieval.

Keywords

GPS Radio occultation Abel FORMOSAT-3/COSMIC Wave number 4 Ionosphere 

References

  1. Chiu YT (1975) An improved phenomenological model of ionospheric density. J Atmos Terr Phys 37:1563–1570CrossRefGoogle Scholar
  2. England SL, Immel TJ, Huba JD, Hagan ME, Maute A, DeMajistre R (2010) Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J Geophys Res 115:A05308. doi:10.1029/2009JA014894 CrossRefGoogle Scholar
  3. Hagan ME, Maute A, Roble RG (2009) Tropospheric tidal effects on the middle and upper atmosphere. J Geophys Res 114:A01302. doi:10.1029/2008JA013637 CrossRefGoogle Scholar
  4. Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33:L15108. doi:10.1029/2006GL026161 CrossRefGoogle Scholar
  5. Lei J et al (2007) Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J Geophys Res 112:A07308. doi:10.1029/2006JA012240 CrossRefGoogle Scholar
  6. Lei J, Yue X, Schreiner WS (2010) Comment on A new aspect of ionospheric E region electron density morphology. In: Y.-H. Chu, K.-H. Wu and C.-L. Su. J Geophys Res 115: A07313. doi:10.1029/2009JA015234
  7. Lin CH, Wang W, Hagan ME, Hsiao CC, Immel TJ, Hsu ML, Liu JY, Paxton LJ, Fang TW, Liu CH (2007) Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys Res Lett 34:L11112. doi:10.1029/2007GL029265 CrossRefGoogle Scholar
  8. Liu JY, Lin CY, Lin CH, Tsai HF, Solomon S, Sun YY, Lee IT, Schreiner WS, Kuo YH (2010) Artificial plasma cave in the low latitude ionosphere results from the radio occultation inversion of the FORMOSAT 3/COSMIC. J Geophys Res 115:A07319. doi:10.1029/2009JA015079 CrossRefGoogle Scholar
  9. Rocken C, Kuo YH, Schreiner WS, Hunt DC, Sokolovskiy SV, McCormick C (2000) COSMIC system description. Terr Atmos Ocean Sci 11(1):21–52Google Scholar
  10. Sagawa E, Immel TJ, Frey HU, Mende SB (2005) Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J Geophys Res 110:A11302. doi:10.1029/2004JA010848 CrossRefGoogle Scholar
  11. Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4):949–966CrossRefGoogle Scholar
  12. Schreiner WS, Rocken C, Sokolovskiy SV, Syndergaard S, Hunt DC (2007) Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34:L04808. doi:10.1029/2006GL027557 CrossRefGoogle Scholar
  13. Syndergaard S, Schreiner WS, Rocken C, Hunt DC, Dymond KF (2006) Preparing for COSMIC: inversion and analysis of ionospheric data products. In: Foelsche U, Kirchengast G, Steiner AK (eds) Atmosphere and climate: studies by occultation methods, part 4. Springer, Berlin, pp 137–146. doi:10.1007/3-540-34121-8_12
  14. Wan W, Liu L, Pi X, Zhang ML, Ning B, Xiong J, Ding F (2008) Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys Res Lett 35:L12104. doi:10.1029/2008GL033755 CrossRefGoogle Scholar
  15. Yue X, Schreiner WS, Lei J, Sokolovskiy SV, Rocken C, Hunt DC, Kuo YH (2010) Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann Geophys 28:217–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Xinan Yue
    • 1
  • William S. Schreiner
    • 1
  • Christian Rocken
    • 1
  • Ying-Hwa Kuo
    • 1
  • Jiuhou Lei
    • 2
  1. 1.COSMIC Program OfficeUniversity Corporation for Atmospheric ResearchBoulderUSA
  2. 2.Department of Aerospace Engineering SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations