Advertisement

GPS Solutions

, Volume 15, Issue 3, pp 219–231 | Cite as

Quality assessment of GPS reprocessed terrestrial reference frame

  • Xavier Collilieux
  • Laurent Métivier
  • Zuheir Altamimi
  • Tonie van Dam
  • Jim Ray
Original Article

Abstract

The International GNSS Service (IGS) contributes to the construction of the International Terrestrial Reference Frame (ITRF) by submitting time series of station positions and Earth Rotation Parameters (ERP). For the first time, its submission to the ITRF2008 construction is based on a combination of entirely reprocessed GPS solutions delivered by 11 Analysis Centers (ACs). We analyze the IGS submission and four of the individual AC contributions in terms of the GNSS frame origin and scale, station position repeatability and time series seasonal variations. We show here that the GPS Terrestrial Reference Frame (TRF) origin is consistent with Satellite laser Ranging (SLR) at the centimeter level with a drift lower than 1 mm/year. Although the scale drift compared to Very Long baseline Interferometry (VLBI) and SLR mean scale is smaller than 0.4 mm/year, we think that it would be premature to use that information in the ITRF scale definition due to its strong dependence on the GPS satellite and ground antenna phase center variations. The new position time series also show a better repeatability compared to past IGS combined products and their annual variations are shown to be more consistent with loading models. The comparison of GPS station positions and velocities to those of VLBI via local ties in co-located sites demonstrates that the IGS reprocessed solution submitted to the ITRF2008 is more reliable and precise than any of the past submissions. However, we show that some of the remaining inconsistencies between GPS and VLBI positioning may be caused by uncalibrated GNSS radomes.

Keywords

GNSS Terrestrial reference frames Loading Geocenter motion Systematic errors 

Notes

Acknowledgments

This work was partly funded by the CNES through a TOSCA grant. Figures 1 and 2 have been made with the General Mapping Tool (GMT) software available at http://gmt.soest.hawaii.edu/ under the GNU General Public License. Corrections made by Alfred Leick and the two anonymous reviewers are acknowledged.

References

  1. Altamimi Z, Collilieux X (2009) IGS contribution to ITRF. J Geod 83(3–4):375–383. doi: 10.1007/s00190-008-0294-x Google Scholar
  2. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res B10(107):2214. doi: 10.1029/2001JB000561
  3. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112(B09401). doi: 10.1029/2007JB004949
  4. Beckley BD, Lemoine FG, Luthcke SB, Ray RD, Zelensky NP (2007) A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34(L14608). doi: 10.1029/2007GL030002
  5. Blewitt G, Lavallée D (2000) Effect of annually repeating signals on geodetic velocity estimates. Bulletin of the Royal Naval Observatory, San Fernando, Spain, No. 3/2000. ISSN 1131-2040Google Scholar
  6. Blewitt G, Lavallée D, Clarke P, Nurutdinov K (2001) A new global mode of earth deformation: seasonal cycle detected. Science 294(5550):2342–2345. doi: 10.1126/science.1065328 CrossRefGoogle Scholar
  7. Böckmann S, Artz T, Nothnagel A (2009) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84(3):201–219. doi: 10.1007/s00190-009-0357-7 Google Scholar
  8. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:7304. doi: 10.1029/2005GL025546 Google Scholar
  9. Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81:679–683. doi: 10.1007/s00190-007-0135-3 CrossRefGoogle Scholar
  10. Collilieux X (2008) Analyse des séries temporelles de positions de stations de géodésie spatiale: application au repère international terrestre (ITRF). Phd Thesis in French. Observatoire de ParisGoogle Scholar
  11. Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112(B12403). doi: 10.1029/2007JB004933
  12. Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114(B04402). doi: 10.1029/2008JB005727
  13. Dilssner F, Seeber G, Wübbena G, Schmitz M (2008) Impact of near-field effects on the GNSS position solution. In: ION GNSS 2008 meeting proceedings. pp 612–624Google Scholar
  14. Dow JM, Neilan RE, Rizos C (2009) The international GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3):191–198. doi: 10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  15. Ferland R (2006) Proposed IGS05 realization. IGS mail 5447Google Scholar
  16. Ferland R, Piraszewski M (2008) The IGS-combined station coordinates, earth rotation parameters and apparent geocenter. J Geod 83:385–392. doi: 10.1007/s00190-008-0295-9 CrossRefGoogle Scholar
  17. Ge M, Gendt G, Dick G, Zhang FP, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32. doi: 10.1029/2004GL022224
  18. Griffiths J, Gendt G, Nischan T, Ray J (2009) Assessment of the orbits from the 1st IGS reprocessing campaign (Invited). AGU Fall Meeting AbstractsGoogle Scholar
  19. Gross RS (2009) Validating earth orientation series with models of atmospheric and oceanic angular momenta. AGU Fall Meeting abstractGoogle Scholar
  20. King M, Watson C (2010) Long GPS coordinate time series: multipath and geometry effects. J Geophys Res 115(B04403). doi: 10.1029/2009JB006543
  21. Lavallée D, van Dam T, Blewitt G, Clarke P (2006) Geocenter motions from GPS: a unified observation model. J Geophys Res 111(B05405). doi: 10.1029/2005JB003784
  22. Mignard F (2005) FAMOUS, frequency analysis mapping on usual sampling. Technical report. Obs. de la Cote d’Azur Cassiopée. Nice, FranceGoogle Scholar
  23. Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Adv Space Res 36:358–368. doi: 10.1016/j.asr.2005.05.113 CrossRefGoogle Scholar
  24. Petrie E, King M, Moore P, Lavallée D (2010) Higher order ionospheric effects on the GPS reference frame and velocities. J Geophys Res 115(B03417). doi: 10.1029/2009JB006677
  25. Ray J, Altamimi Z, Collilieux X, van Dam T (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1). doi: 10.1007/s10291-007-0067-7
  26. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system, bull. Amer Meteor Soc 85(3):381–394CrossRefGoogle Scholar
  27. Rülke A, Dietrich R, Fritsche M, Rothacher M, Steigenberger P (2008) Realization of the terrestrial reference system by a reprocessed global GPS network. J Geophys Res 113(B12):8403. doi: 10.1029/2007JB005231 Google Scholar
  28. Sarti P, Abbondanza C, Vittuari L (2009) Gravity-dependent signal path variation in a large VLBI telescope modeled with a combination of surveying methods. J Geod 83(11):1115–1126. doi: 10.1007/s00190-009-0331-4 Google Scholar
  29. Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geod 81:379–387. doi: 10.1007/s00190-006-0131-z CrossRefGoogle Scholar
  30. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81:781–798. doi: 10.1007/s00190-007-0148-y CrossRefGoogle Scholar
  31. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111(B10):5402. doi: 10.1029/2005JB003747 Google Scholar
  32. Steigenberger P, Boehm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83(10):943–951. doi: 10.1007/s00190-009-0311-8 Google Scholar
  33. Tapley B, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004) GRACE measurements of mass variability in the earth system. Science 305(5693):503–506. doi: 10.1126/science.1099192 CrossRefGoogle Scholar
  34. Tesmer V, Steigenberger P, Rothacher M, Boehm J, Meisel B (2009) Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J Geod 83:973–988, doi: 10.1007/s00190-009-0316-3 Google Scholar
  35. Tregoning P, Herring TA (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33:23303. doi: 10.1029/2006GL027706 Google Scholar
  36. Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114(B13):9403. doi: 10.1029/2009JB006344 Google Scholar
  37. Urschl C, Gurtner W, Hugentobler U, Schaer S, Beutler G (2005) Validation of GNSS orbits using SLR observations. Adv Space Res 36:412–417. doi: 10.1016/j.asr.2005.03.021 CrossRefGoogle Scholar
  38. Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10):1515–1523. doi:DOI:  10.1016/j.asr.2007.01.038 Google Scholar
  39. Wöppelmann G, Letretel C, Santamaría A, Bouin M-N, Collilieux X, Altamimi Z, Williams S, Martín Míguez B (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36(L12607). doi: 10.1029/2009GL038720
  40. Wu X, Heflin MB, Ivins E, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111(B10):9401. doi: 10.1029/2005JB004100 Google Scholar
  41. Yan H, Chen W, Zhu Y, Zhang W, Zhong M (2009) Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys Res Lett 36:13301. doi: 10.1029/2009GL038152 Google Scholar
  42. Zhu SY, Massmann F-H, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76:668–672. doi: 10.1007/s00190-002-0294-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Xavier Collilieux
    • 1
  • Laurent Métivier
    • 1
  • Zuheir Altamimi
    • 1
  • Tonie van Dam
    • 2
  • Jim Ray
    • 3
  1. 1.IGN/LAREG and GRGSMarne La Vallée Cedex 2France
  2. 2.University of LuxembourgLuxembourgLuxembourg
  3. 3.NOAA National Geodetic SurveySilver SpringUSA

Personalised recommendations