GPS Solutions

, Volume 15, Issue 3, pp 207–218 | Cite as

GPS/INS navigation precision and its effect on airborne radio occultation retrieval accuracy

  • Paytsar Muradyan
  • Jennifer S. Haase
  • Feiqin Xie
  • James L. Garrison
  • Justin Voo
Original Article

Abstract

An airborne radio occultation (RO) system has been developed to retrieve atmospheric profiles of refractivity, moisture, and temperature. The long-term objective of such a system is deployment on commercial aircraft to increase the quantity of moisture observations in flight corridors in order to improve weather forecast accuracy. However, there are several factors important to operational feasibility that have an impact on the accuracy of the airborne RO results. We investigate the effects of different types of navigation system noise on the precision of the retrieved atmospheric profiles using recordings from the GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) test flights, which used an Applanix POS/AV 510 Global Positioning System (GPS)/Inertial Navigation System (INS). The data were processed using a carrier phase differential GPS technique, and then the GPS position and inertial measurement unit data were combined in a loosely coupled integrated inertial navigation solution. This study quantifies the velocity precision as a function of distance from GPS reference network sites, the velocity precision with or without an inertial measurement unit, the impact of the quality of the inertial measurement unit, and the compromise in precision resulting from the use of real-time autonomous GPS positioning. We find that using reference stations with baseline lengths of up to 760 km from the survey area has a negligible impact on the retrieved refractivity precision. We also find that only a small bias (less than 0.5% in refractivity) results from the use of an autonomous GPS solution rather than a post-processed differential solution when used in an integrated GPS/INS system. This greatly expands the potential range of an operational airborne radio occultation system, particularly over the oceans, where observations are sparse.

Keywords

GPS/INS precision Airborne radio occultation Retrieval accuracy 

References

  1. Alban S, Akos D, Rock SM (2003) Performance analysis and architectures for INS-aided GPS tracking loops. In: 2003 National technical meeting of the Institute of Navigation, pp 611–622. Anaheim, CA: IONGoogle Scholar
  2. Alves P, Lachapelle G, Cannon ME, Park J, Park P (2002) Use of self-contained ionospheric modeling to enhance long baseline multiple reference station RTK positioning. In: Institute of Navigation Satellite Division technical meeting, 12. Portland, OR, USA: IONGoogle Scholar
  3. Cannon ME, Lachapelle G, Sun H (1999) Development and testing of an integrated INS/GPS cross-linked system for sub-meter positioning of a CF-188 jet fighter. In: 55th annual meeting of the Institute of Navigation pp 43–44. Cambridge, MAGoogle Scholar
  4. Chen D, Lachapelle G (1995) A comparison of the FASF and least-squares search algorithms for on-the-fly ambiguity resolution. J Inst Navig 42:371–390Google Scholar
  5. Cucurull L, Kuo YH, Barker D, Rizvi SRH (2006) Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: a case study. Mon Weather Rev 134:3283–3296CrossRefGoogle Scholar
  6. Danno S (2006) Observation of refractive index profiles with GPS radio occultation from an airplane. In: Department of Communications and Computer Engineering, Graduate School of Informatics. Kyoto, Japan: Kyoto UniversityGoogle Scholar
  7. Fjeldbo G, Kliore AJ, Eshleman VR (1971) The neutral atmosphere of venus as studied with the Mariner V radio occultation experiments. Astron J 76:123–140CrossRefGoogle Scholar
  8. Garrison JL, Walker M, Haase JS, Lulich T, Xie F, Ventre BD, Boehme MH, Wilmhoff B, Katzberg SJ (2007) Development and testing of the GISMOS instrument. In: IEEE International geoscience and remote sensing symposium, ed. IEEE. Barcelona, SpainGoogle Scholar
  9. GRAS-SAG E (1998) Report of the GRAS-SAG: the GRAS instrument on METOP. 38. EUMETSATGoogle Scholar
  10. Haase J, Ge M, Vedel H, Calais E (2003) Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western mediterranean. J Appl Meteorol 42:1547–1568CrossRefGoogle Scholar
  11. Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS (2002) A technical description of atmospheric sounding by GPS occultation. J Atmos Solar Terr Phys 64:451–469CrossRefGoogle Scholar
  12. Hajj GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, Juarez MD, Yunck TP (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res Atmos 109:D06109Google Scholar
  13. Healy SB, Haase J, Lesne O (2002) Abel transform inversion of radio occultation measurements made with a receiver inside the Earth’s atmosphere. Ann Geophys 20:1253–1256CrossRefGoogle Scholar
  14. Hernandez-Pajares M, Juan JM, Sanz J, Colombo OL (2002) Improving the real-time ionospheric determination from GPS sites at very long distances over the equator. J Geophys Res 107:1296–1305CrossRefGoogle Scholar
  15. HIAPER Advisory Committee (2003) HIAPER instrumentation prioritiesGoogle Scholar
  16. Hoeg P, Hauchecorne A, Kirchengast G, Syndergaard S, Belloul B, Leitinger R, Rothleitner W (1995) Derivation of atmospheric properties using a radio occultation technique. 208. Danish Met. Institute, DenmarkGoogle Scholar
  17. Hofmann-Wellenhoff B, Lichtenegger H, Collins J (2001) GPS: theory and practice, 5th edn. Springer, New YorkGoogle Scholar
  18. Hu G, Abbey DA, Castleden N, Featherstone WE, Earls C, Ovstedal O, Weihing D (2005) An approach for instantaneous ambiguity resolution for medium-to long-range multiple reference station networks. GPS Solut 9:1–11CrossRefGoogle Scholar
  19. Hutton J, Bourke T, Scherzinger B (2007) New developments of inertial navigation systems at Applanix. In: Fritsch D (ed) Photogrammetric week. University of Stuttgart, Institute for Photogrammetry, Stuttgart, pp 201–213Google Scholar
  20. Kennedy S, Hamilton J, Martell H (2006) Architecture and system performance of SPAN—NovAtel’s GPS/INS solution. In: IEEE/ION PLANS pp 266–274. San Diego, CA: IONGoogle Scholar
  21. Kursinski ER, Hajj GA, Hardy KR, Schofield JT, Linfield R (1997) Observing Earth’s atmosphere with radio occultation measurements. J Geophys Res 102:23429–23465CrossRefGoogle Scholar
  22. Larson KM, Agnew DC (1991) Application of the global positioning system to crustal deformation measurements: part 1, precision and accuracy. J Geophys Res 96:16547–16565CrossRefGoogle Scholar
  23. Lesne O, Haase J, Kirchengast G, Ramsauer J, Poetzi W (2002) Sensitivity analysis for airborne sounding of the troposphere by GNSS radio occultation. Phys Chem Earth 27:291–299Google Scholar
  24. Mostafa M, Hutton J, Reid B (2001) GPS/IMU products- the Applanix approach. In: Fritsch DaSR (ed) Photogrammetric week. University of Stuttgart, Institute for Photogrammetry, Stuttgart, pp 63–83Google Scholar
  25. Poli P, Joiner J, Kursinski ER (2002) 1DVAR analysis of temperature and humidity using GPS radio occultation refractivity data. J Geophys Res 107:4448–4467Google Scholar
  26. Rocken C, Hove TV, Ware R (1997) Near real-time GPS sensing of atmospheric water vapor. Geophys Res Lett 24:3221–3224CrossRefGoogle Scholar
  27. Rocken C, Kuo YH, Schreiner WS, Hunt D, Sokolovskiy S, McCormick C (2000) COSMIC system description. Terr Atmos Ocean Sci 11:21–52Google Scholar
  28. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW et al (eds) The use of artificial satellites for geodesy. American Geophysical Union, Washington, D.C., pp 247–251Google Scholar
  29. Schmid B, Michalsky JJ, Slater DW, Barnard JC, Halthore RN, Liljegren JC, Holben BN, Eck TF, Livingstone JM, Russell PB, Ingold T, Slustker I (2001) Comparison of columnar water-vapour measurements from solar transmittance methods. Appl Optics 40:1886–1896CrossRefGoogle Scholar
  30. Schreiner W, Rocken C, Sokolovskiy S, Syndergaard S, Hunt D (2007) Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34:L04808.1–L04808.5Google Scholar
  31. Sokolovskiy S (2001) Tracking tropospheric radio occultation signals from low Earth orbit. Radio Sci 36:483–498CrossRefGoogle Scholar
  32. Tregoning P, Boers R, O’Brien D, Hendy M (1998) Accuracy of absolute precipitable water vapor estimates from GPS observations. J Geophys Res 103:28701–28710CrossRefGoogle Scholar
  33. Vorobev VV, Krasil’nikova TG (1994) Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system. Phys Atmos Oceans 29:602–609Google Scholar
  34. Wu BH, Chu V, Chen P, Ting T (2005) FORMOSAT-3/COSMIC science mission update. GPS Solut 9:111–121CrossRefGoogle Scholar
  35. Xie F, Haase JS, Syndergaard S (2008) Profiling the atmosphere using the airborne GPS radio occultation technique: a sensitivity study. Trans IEEE Geosci Remote Sens 46:3424–3435CrossRefGoogle Scholar
  36. Zuffada C, Hajj G, Kursinski ER (1999) A novel approach to atmospheric profiling with a mountain-based or airborne GPS receiver. J Geophys Res 104:24435–24447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Paytsar Muradyan
    • 1
  • Jennifer S. Haase
    • 1
  • Feiqin Xie
    • 2
  • James L. Garrison
    • 3
  • Justin Voo
    • 3
  1. 1.Department of Earth and Atmospheric SciencesPurdue UniversityWest LafayetteUSA
  2. 2.JIFRESSE, University of CaliforniaLos AngelesUSA
  3. 3.Department of Aeronautics and Astronautics EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations