GPS Solutions

, Volume 15, Issue 1, pp 79–87 | Cite as

GPS tomography in the polar cap: comparison with ionosondes and in situ spacecraft data

  • Dimitry PokhotelovEmail author
  • P. T. Jayachandran
  • Cathryn N. Mitchell
  • John W. MacDougall
  • Michael H. Denton
Eye on the Ionosphere


Tomographic 4D reconstructions of ionospheric anomalies appearing in the high-latitude polar cap region are compared with plasma density measurements by digital ionosonde located near the north magnetic pole at Eureka station and with in situ plasma measurements on-board DMSP spacecraft. The moderate magnetic storm of 14–17 October 2002 is taken as an example of a geomagnetic disturbance which generates large-scale ionospheric plasma anomalies at mid-latitudes and in the polar cap region. Comparison of the GPS tomographic reconstructions over Eureka station with the ionosonde measurements of the F layer peak densities indicates that the GPS tomography correctly predicts the time of arrival and passage of the ionospheric tongue of ionization over the magnetic pole area, although the tomographic technique appears to under-estimate the value of F peak plasma density. Comparison with the in situ plasma measurements by the DMSP SSIES instruments shows that the GPS tomography correctly reproduces the large-scale spatial structure of ionospheric anomalies over a wide range of latitudes from mid-latitudes to the high-latitude polar cap region, though the tomographic reconstructions tend to over-estimate the density of the topside ionosphere at 840 km DMSP orbit. This study is essential for understanding the quality and limitations of the tomographic reconstruction techniques, particularly in high-latitude regions where GPS TEC measurements and other ionospheric data sources are limited.


Ionosphere Geomagnetic storms GPS tomography 



The Canadian authors would like to acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada. The UK authors acknowledge the financial support from the UK Science and Technology Facilities Council and the Royal Society Wolfson Research Award. CADI and CHAIN operation is conducted in collaboration with the Canadian Space Agency. DMSP SSIES data is provided by the University of Texas in Dallas. We would like to thank the International GNSS Service for making the GPS data available, University of Kyoto for providing geomagnetic indices and the NASA OMNIweb service for providing the solar wind data.


  1. Austen JR, Franke SJ, Liu CH (1988) Ionospheric imaging using computerized tomography. Radio Sci 23(3):299–307CrossRefGoogle Scholar
  2. Bust GS, Mitchell CN (2008) History, current state, and future directions of ionospheric imaging. Rev Geophys 46:RG1003. doi: 10.1029/2006RG000212 CrossRefGoogle Scholar
  3. Coster AJ, Foster JC, Erickson PJ (2003) Monitoring the Ionosphere with GPS. GPS World 6:40–45Google Scholar
  4. Davies K (1990) Ionospheric radio. Peter Peregrinus Ltd. London. ISBN 0-86341-186-XGoogle Scholar
  5. Foster JC (1993) Storm time plasma transport at middle and high latitudes. J Geophys Res 98((A2)):1675–1689CrossRefGoogle Scholar
  6. Foster JC, Coster AJ, Erickson PJ, Holt JM, Lind FD, Rideout W, McCready M, van Eyken A, Barnes RJ, Greenwald RA, Rich FJ (2005) Multiradar observations of the polar tongue of ionization. J Geophys Res 110: A09S31. doi:  10.1029/2004JA010928
  7. Jakowski N, Wehrenpfennig A, Herse S, Reigber Ch, Luhr H, Grunwaldt L, Meehan TK (2002) GPS radio occultation measurements of the ionosphere from CHAMP: early results. Geophys Res Lett 29(10):1457. doi: 10.1029/2001GL014364 CrossRefGoogle Scholar
  8. Jayachandran PT, Langley RB, MacDougall JW, Mushini SC, Pokhotelov D, Hamza AM, Mann IR, Milling D, Chadwick R, Kelly T, Danskin DW, Carrano C (2009) The Canadian High Arctic Ionospheric Network (CHAIN). Radio Sci 44:RS0A03. doi: 10.1029/2008RS004046 CrossRefGoogle Scholar
  9. MacDougall JW, Jayachandran PT (2001) Polar cap convection relationships with solar wind. Radio Sci 36(6):1869–1880CrossRefGoogle Scholar
  10. Mannucci AJ, Tsurutani BT, Iijima BA, Komjathy A, Saito A, Gonzalez WD, Guarnieri FL, Kozyra JU, Skoug R (2005) Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 Halloween storms. Geophys Res Lett 32:L12S02–L12S56. doi: 10.1029/2004GL021467 CrossRefGoogle Scholar
  11. Mitchell CN, Spencer PSJ (2003) A three-dimensional time-dependent algorithm for ionospheric imaging using GPS. Ann Geophys-Italy 46(4):687–696Google Scholar
  12. Pokhotelov D, Mitchell CN, Jayachandran PT, MacDougall JW, Denton MH (2009) Ionospheric response to the CIR-driven geomagnetic storm of October 2002. J Geophys Res 114:A12311. doi: 10.1029/2009JA014216 CrossRefGoogle Scholar
  13. Rich FJ, Hairston M (1994) Large-scale convection patterns observed by DMSP. J Geophys Res 99((A3)):3827–3844CrossRefGoogle Scholar
  14. Ruohoniemi JM, Baker KB (1998) Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations. J Geophys Res 103((A9)):20797–20811CrossRefGoogle Scholar
  15. Spencer PSJ, Mitchell CN (2007) Imaging of fast moving electron-density structures in the polar cap. Ann Geophys-Italy 50(3):427–434Google Scholar
  16. Weimer DR (1995) Models of high-latitude electric potentials derived with a least error fit of spherical harmonic coefficients. J Geophys Res 100((A110)):19595–19608CrossRefGoogle Scholar
  17. Wen D (2007) Imaging the ionospheric electron density using a combined tomographic algorithm. In: Proceedings of the 20th international technical meeting of the satellite division of the institute of navigation. ION GNSS, Fort Worth, TX, pp 2337–2345Google Scholar
  18. Wen D, Yuan Y, Ou J, Huo X, Zhang K (2007) Ionospheric temporal and spatial variations during the 18 August 2003 storm over China. Earth Planets Space 59(4):313–317Google Scholar
  19. Yin P, Mitchell CN (2005) Use of radio-occultation data for ionospheric imaging during the April 2002 disturbances. GPS Solut 9:156–163. doi: 10.1007/s10291-005-0143-9 CrossRefGoogle Scholar
  20. Yin P, Mitchell CN, Bust GS (2006) Observations of the F region height redistribution in the storm-time ionosphere over Europe and the USA using GPS imaging. Geophys Res Lett 33:L18803. doi: 10.1029/2006GL027125 CrossRefGoogle Scholar
  21. Yin P, Mitchell CN, Spencer P, McCrea I, Pedersen T (2008) A multi-diagnostic approach to understanding high-latitude plasma transport during the Halloween 2003 storm. Ann Geophys 26(8):2739–2747CrossRefGoogle Scholar
  22. Yizengaw E, Moldwin MB, Galvan DA (2006) Ionospheric signatures of a plasmaspheric plume over Europe. Geophys Res Lett 33:L17103. doi: 10.1029/2006GL026597 CrossRefGoogle Scholar
  23. Zhang JI, Richardson G, Webb DF, Gopalswamy N, Huttunen E, Kasper JC, Nitta NV, Poomvises W, Thompson BJ, Wu CC, Yashiro S, Zhukov AN (2007) Solar and interplanetary sources of major geomagnetic storms (Dst≤-100 nT) during 1996–2005. J Geophys Res 112:A10102. doi: 10.1029/2007JA012321 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dimitry Pokhotelov
    • 1
    Email author
  • P. T. Jayachandran
    • 1
  • Cathryn N. Mitchell
    • 2
  • John W. MacDougall
    • 3
  • Michael H. Denton
    • 4
  1. 1.Physics DepartmentUniversity of New BrunswickFrederictonCanada
  2. 2.Department of Electronic & Electrical EngineeringUniversity of BathBathUK
  3. 3.Department of Physics and AstronomyUniversity of Western OntarioLondonCanada
  4. 4.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations