GPS Solutions

, Volume 15, Issue 1, pp 39–48 | Cite as

Assessment of ECMWF-derived tropospheric delay models within the EUREF Permanent Network

Original article

Abstract

The Global Positioning System (GPS) observations from the EUREF Permanent Network (EPN) are routinely analyzed by the EPN analysis centers using a tropospheric delay modeling based on standard pressure values, the Niell Mapping Functions (NMF), a cutoff angle of 3° and down-weighting of low elevation observations. We investigate the impact on EPN station heights and Zenith Total Delay (ZTD) estimates when changing to improved models recommended in the updated 2003 International Earth Rotation and Reference Systems Service (IERS) Conventions, which are the Vienna Mapping Functions 1 (VMF1) and zenith hydrostatic delays derived from numerical weather models, or the empirical Global Mapping Functions (GMF) and the empirical Global Pressure and Temperature (GPT) model. A 1-year Global Positioning System (GPS) data set of 50 regionally distributed EPN/IGS (International GNSS Service) stations is processed. The GPS analysis with cutoff elevation angles of 3, 5, and 10° revealed that changing to the new recommended models introduces biases in station heights in the northern part of Europe by 2–3 mm if the cutoff is lower than 5°. However, since large weather changes at synoptic time scales are not accounted for in the empirical models, repeatability of height and ZTD time series are improved with the use of a priori Zenith Hydrostatic Delays (ZHDs) derived from numerical weather models and VMF1. With a cutoff angle of 3°, the repeatability of station heights in the northern part of Europe is improved by 3–4 mm.

Keywords

GPS EUREF Permanent Network Troposphere Mapping function Cutoff angle 

List of Abbreviations

DORIS

Doppler Orbit determination and Radiopositioning Integrated on Satellite

EPN

EUREF Permanent Network

GMF

Global Mapping Functions

GNSS

Global Navigation Satellite System

GPS

Global Positioning System

GPT

Global Pressure and Temperature

IERS

International Earth rotation and Reference systems Service

IGS

International GNSS Service

ITRF

International Terrestrial Reference Frame

NMF

Niell Mapping Functions

SPT

Standard Pressure and Temperature

STD

Slant Total Delay

VLBI

Very Long Base Interferometry

VMF1

Vienna Mapping Functions 1

VZHD

Vienna Zenith Hydrostatic Delay

ZHD

Zenith Hydrostatic Delay

ZTD

Zenith Total Delay

ZWD

Zenith Wet Delay

Notes

Acknowledgments

We thank the IGS and the EUREF Permanent Network for providing GPS data. We also thank the staff of the Vienna University of Technology for providing data and R.W. King for his advice on the Gamit/GlobK v.10.34 software. We acknowledge the editors, two anonymous reviewers, and J. Nicolas for their constructive comments. F. Fund was financially supported by the “Ordre des Géomètres Expert” and the “Région des Pays de la Loire”.

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Berg H (1948) Allgemeine Meteorologie. Duemmler, BonnGoogle Scholar
  3. Boehm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31:L01603. doi:10.1029/2003GL018984 CrossRefGoogle Scholar
  4. Boehm J, Niell A, Tregoning P, Schuh H (2006a) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi:10.1029/2005GL025546 CrossRefGoogle Scholar
  5. Boehm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and very long baseline interferometry from European center for medium-range weather forecasts operational analysis data. J Geophys Res 111:B02406. doi:10.1029/2005JB003629 CrossRefGoogle Scholar
  6. Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod. doi: 10.1007/s00190-007-0135-3
  7. Boehm J, Heinkelmann R, Schuh H (2009) Neutral atmosphere delays: empirical models versus discrete time series from numerical weather data. In: Proceedings of the Geod. Ref. Frame (GRF) 2006 meeting, Munich (in press)Google Scholar
  8. Dow J, Neilan R, Gendt G (2005) The International GPS Service (IGS): celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3):320–326. doi:10.1016/j.asr.2005.05.125 CrossRefGoogle Scholar
  9. Herring TA, King RW, McKlusky SC (2006) Reference manual for the GAMIT GPS software, release, 10.3., Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Boston, USA, p 182Google Scholar
  10. Kenyeres A, Bruyninx C (2004) Monitoring of the EPN coordinate time series for improved reference frame maintenance. GPS Solutions 8(4):200–209CrossRefGoogle Scholar
  11. Kouba J (2007) Implementation and testing of the gridded Vienna mapping function 1 (VMF1). J. Geod. doi: 10.1007/s00190-007-0170-0
  12. Kouba J (2009) Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analysis. J Geod. doi: 10.1007/s00190-008-0229-6
  13. McCarthy DD, Petit G (eds) (2004) IERS Conventions (2003), IERS Technical Note No. 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, GermanyGoogle Scholar
  14. Niell AE (1996) Global mapping functions for the atmospheric delay at radio wavelengths. J Geophys Res 101:3227–3246CrossRefGoogle Scholar
  15. Niell AE (2000) Improved atmospheric mapping functions for VLBI and GPS. Earth Planet Space 52:699–702Google Scholar
  16. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW, Mancini A, Chovitz BH (eds) The use of artificial satellites for geodesy, Geophys. Monogr. Ser. 15, AGU, Washington, pp 247–251Google Scholar
  17. Santerre R (1991) Impact of GPS sky distribution. Manuscripta Geodaetica 16(1):28–53Google Scholar
  18. Schmid R, Steigenberger P, Gendt G, Maorong G, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod. doi: 10.1007/s00190-007-0148-y
  19. Simmons AJ, Gibson JK (2000) The ERA-40 Project Plan, ERA-40 Proj. Rep. Ser. 1, Eur. Cent. for Medium-Range Weather Forecast. Reading, UKGoogle Scholar
  20. Steigenberger P, Boehm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and Implications for atmospheric loading. J Geod. doi: 10.1007/s00190-009-0311-8
  21. Tesmer V, Boehm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J. Geod. doi:10.1007/s00190-006-0126-9
  22. Tregoning P, Herring TA (2006) Impact of a priori hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33:L23303. doi:10.1029/2006GL027706 CrossRefGoogle Scholar
  23. Tregoning P, Van Dam T (2005) Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys Res Lett 32:L22310. doi:10.1029/2005GL024104 CrossRefGoogle Scholar
  24. Wallace JM, Zhang Y, Lau K-H (1993) Structure and seasonality of interannual and interdecadal variability of geopotential height and temperature fields in the Northern Hemisphere troposphere. J Climate 6:2063–2082CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Laboratoire de Géomatique et de Géodésie (L2G)ESGT/CNAMLe MansFrance
  2. 2.Université de Nantes, Nantes Atlantique Université, CNRS, Laboratoire de Planétologie et Géodynamique, UMR 6112, UFR des Sciences et des TechniquesNantes Cedex 3France
  3. 3.Vienna University of TechnologyViennaAustria

Personalised recommendations