GPS Solutions

, Volume 14, Issue 4, pp 331–341 | Cite as

Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum

  • Guozhu LiEmail author
  • Baiqi Ning
  • Zhipeng Ren
  • Lianhuan Hu
Original Article


A statistical study of the occurrence characteristic of GPS ionospheric scintillation and irregularity in the polar latitude is presented. These measurements were made at Ny-Alesund, Svalbard [78.9°N, 11.9°E; 75.8°N corrected geomagnetic latitude (CGMLat)] and Larsemann Hills, East Antarctica (69.4°S, 76.4°E; 74.6°S CGMLat) during 2007–2008. It is found that the GPS phase scintillation and irregularity activity mainly takes place in the months 10, 11 and 12 at Ny-Alesund, and in the months 5, 6 at Larsemann Hills. The seasonal pattern of phase scintillation with respect to the station indicates that the GPS phase scintillation occurrence is a local winter phenomenon, which shows consistent results with past studies of 250 MHz satellite beacon measurements. The occurrence rates of GPS amplitude scintillation at the two stations are below 1%. A comparison with the interplanetary magnetic field (IMF) B y and B z components shows that the phase scintillation occurrence level is higher during the period from later afternoon to sunset (16–19 h) at Ny-Alesund, and from sunset to pre-midnight (18–23 h) at Larsemann Hills for negative IMF components. The findings seem to indicate that the dependence of scintillation and irregularity occurrence on geomagnetic activity appears to be associated with the magnetic local time (MLT).


GPS Ionospheric scintillation Polar latitude irregularity IMF 



This work was supported by the Chinese Arctic and Antarctic Administration (20070209), National Natural Science Foundation of China (40774091, 40574072) and National Important Basic Research Project (2006CB806306). The authors acknowledge CDAWeb for providing the IMF datasets.


  1. Aarons J (1997) Global positioning system phase fluctuations at auroral latitudes. J Geophys Res 102(A8):17219–17231CrossRefGoogle Scholar
  2. Aarons J, Mullen J, Whitney H, Johnson A, Weber E (1981) UHF Scintillation activity over polar latitudes. Geophys Res Lett 8(3):277–280CrossRefGoogle Scholar
  3. Aquino M, Moore T, Dodson A, Waugh S, Souter J, Rodrigues FS (2005) Implications of ionospheric scintillation for GNSS users in Northern Europe. J Navig 58:241–256CrossRefGoogle Scholar
  4. Banerjee PK, Dabas RS, Reddy BM (1992) C and L band transionospheric scintillation experiment: some results for applications to satellite radio systems. Radio Sci 27(6):955–969CrossRefGoogle Scholar
  5. Basu S, Basu S, Aarons J, McClure J, Cousins M (1978) On the coexistence of kilometer- and meter-scale irregularities in the Nighttime Equatorial F region. J Geophys Res 83(A9):4219–4226CrossRefGoogle Scholar
  6. Basu S, MacKenzie E, Basu S, Carlson H, Hardy D, Rich F, Livingston R (1983) Coordinated measurements of low-energy electron precipitation and scintillations/TEC in the auroral oval. Radio Sci 18(6):1151–1165CrossRefGoogle Scholar
  7. Basu S, Basu S, MacKenzie E, Whitney H (1985) Morphology of phase and intensity scintillations in the auroral oval and polar cap. Radio Sci 20(3):347–356CrossRefGoogle Scholar
  8. Basu S, Basu S, Senior C, Weimer D, Nielsen E, Fougere P (1986) Velocity shears and sub-km scale irregularities in the Nighttime Auroral F-region. Geophys Res Lett 13(2):101–104CrossRefGoogle Scholar
  9. Basu S, Basu S, MacKenzie E, Fougere P, Coley W, Maynard N, Winningham J, Sugiura M, Hanson W, Hoegy W (1988) Simultaneous density and electric field fluctuation spectra associated with velocity shears in the Auroral Oval. J Geophys Res 93(A1):115–136CrossRefGoogle Scholar
  10. Basu S, Weber E, Bullett T, Keskinen M, MacKenzie E, Doherty P, Sheehan R, Kuenzler H, Ning P, Bongiolatti J (1998) Characteristics of plasma structuring in the cusp/cleft region at Svalbard. Radio Sci 33(6):1885–1899CrossRefGoogle Scholar
  11. Basu S, Groves KM, Quinn JM, Doherty P (1999) A comparison of TEC fluctuations and scintillations at Ascension Island. J Atmos Terr Phys 61:1219–1226CrossRefGoogle Scholar
  12. Beach TL (2006) Perils of the GPS phase scintillation index (σ). Radio Sci 41:RS5S31. doi: 10.1029/2005RS003356 CrossRefGoogle Scholar
  13. Beggs HM, Essex EA, Rasch D (1994) Antarctic polar cap total electron content observations from Casey station. J Atmos Terr Phys 56(5):659–666CrossRefGoogle Scholar
  14. De Franceschi G, Alfonsi L, Romano V (2006) Isacco: an Italian project to monitor the high latitude ionosphere by means of GPS receivers. GPS Solut 10:263–267. doi: 10.1007/s10291-006-0036-6 CrossRefGoogle Scholar
  15. De Franceschi G, Alfonsi L, Romano V, Aquino M, Dodson A, Mitchell CN, Spencer P, Wernik AW (2008) Dynamics of high-latitude patches and associated small-scale irregularities during the October and November 2003 storms. J Atmos Solar-Terr Phys 70:879–888CrossRefGoogle Scholar
  16. Fejer BG, Scherlies L, de Paula ER (1999) Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res 104:19859–19869CrossRefGoogle Scholar
  17. Feldstein YI (1963) On morphology of auroral and magnetic disturbances at high latitudes. Geomagn Aeron SSSR 3:227–239Google Scholar
  18. Forte B (2005) Optimum detrending of raw GPS data for scintillation measurements at auroral latitudes. J Atmos Solar-Terr Phys 67:1100–1109CrossRefGoogle Scholar
  19. Forte B, Radicella SM (2002) Problems in data treatment for ionospheric scintillation measurements. Radio Sci 37(6):1096. doi: 10.1029/2001RS002508 CrossRefGoogle Scholar
  20. Forte B, Radicella SM (2004) Geometrical control of scintillation indices: what happens for GPS satellites. Radio Sci 39:RS5014. doi: 10.1029/2002RS002852 CrossRefGoogle Scholar
  21. Fremouw E, Leadabrand R, Livingston R, Cousins M, Rino C, Fair B, Long R (1978) Early results from the DNA wideband satellite experiment—complex-signal scintillation. Radio Sci 13(1):167–187CrossRefGoogle Scholar
  22. Holzworth RH, Meng C-I (1975) Mathematical representation of the Auroral Oval. Geophys Res Lett 2:377CrossRefGoogle Scholar
  23. Kelley MC (1989) The earth’s ionosphere, plasma physics and electrodynamics. Academic, San DiegoGoogle Scholar
  24. Kersley L, Pryse S, Wheadon N (1988) Amplitude and phase scintillation at high latitudes over northern Europe. Radio Sci 23(3):320–330CrossRefGoogle Scholar
  25. Kersley L, Russell C, Rice D (1995) Phase scintillation and irregularities in the northern polar ionosphere. Radio Sci 30(3):619–629CrossRefGoogle Scholar
  26. Keskinen M, Ossakow S (1983) Theories of high-latitude ionospheric irregularities: a review. Radio Sci 18(6):1077–1091CrossRefGoogle Scholar
  27. Klobuchar J (2002) Ionospheric research issues for SBAS—A White Paper. SBAS Ionospheric Working Group, Ver 225Google Scholar
  28. Li G, Ning B, Liu L, Ren Z, Lei J, Su S-Y (2007) The correlation of longitudinal/seasonal variations of evening equatorial pre-reversal drift and of plasma bubbles. Ann Geophys 25:2571–2578CrossRefGoogle Scholar
  29. Lockwood M, Carlson HC Jr (1992) Production of polar cap electron density patches by transient magnetopause reconnection. Geophys Res Lett 19:1731CrossRefGoogle Scholar
  30. MacDougall J (1990) Distribution of irregularities in the northern polar region determined from HILAT observations. Radio Sci 25(2):115–124CrossRefGoogle Scholar
  31. Mangalev VS, Krisvilev VN, Mingaleva GI (1994) Precipitating soft corpuscle influence on the parameters of the ionosphere E and F regions at the cusp region. Geomagn Aeron 34:200–204Google Scholar
  32. Meggs RW, Mitchell CN, Honary F (2008) GPS scintillation over the European Arctic during the November 2004 storms. GPS Solut 12:281–287. doi: 10.1007/s10291-008-0090-3 CrossRefGoogle Scholar
  33. Mitchell CN, Alfonsi L, De Franceschi G, Lester M, Romano V, Wernik AW (2005) GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm. Geophys Res Lett 32:L12S03. doi: 10.1029/2004GL021644 CrossRefGoogle Scholar
  34. Rino CL, Livingston RC, Tsunoda RT, Robinson RM, Vickrey JF, Senior C, Cousins MD, Owen J, Klobuchar JA (1983) Recent studies of the structure and morphology of auroral zone F region irregularities. Radio Sci 18:1167–1180CrossRefGoogle Scholar
  35. Rodrigues FS, Aquino MHO, Dodson A, Moore T, Waugh S (2004) Statistical analysis of GPS ionospheric scintillation and short-time TEC variations over northern Europe. J Inst Navig 51(1):59–75Google Scholar
  36. Sandholt PE, Farrugia CJ, Moen J, Noraberg Ø, Lybekk B, Sten T, Hansen T (1998) A classification of dayside auroral forms and activities as a function of interplanetary magnetic field orientation. J Geophys Res 103:23325CrossRefGoogle Scholar
  37. Su S-Y, Lin CH, Ho HH, Chao CK (2006) Distribution characteristics of topside ionospheric density irregularities: equatorial versus midlatitude regions. J Geophys Res 111:A06305. doi: 10.1029/2005JA011330 CrossRefGoogle Scholar
  38. Tate BS, Essex EA (2001) Investigation of irregularities in the Southern high latitude ionosphere. Adv Space Res 27(8):1385–1389CrossRefGoogle Scholar
  39. Tsunoda R (1988) High-Latitude F Region irregularities: a review and synthesis. Rev Geophys 26(4):719–760CrossRefGoogle Scholar
  40. Valladares CE, Alcaydé D, Rodriguez JV, Ruohoniemi JM, Van Eyken AP (1999) Observations of plasma density structures in association with the passage of traveling convection vortices and the occurrence of large plasma jets. Ann Geophysicae 14:1020CrossRefGoogle Scholar
  41. Van Dierendonck AJ, Hua Q, Klobuchar J (1993) Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proceedings of ION GPS 93, Salt Lake City, UT, 22–24 September, pp 1333–1342Google Scholar
  42. Weber E, Buchau J, Moore J, Sharber J, Livingston R, Winningham J, Reinisch B (1984) F Layer ionization patches in the Polar Cap. J Geophys Res 89(A3):1683–1694CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Guozhu Li
    • 1
    Email author
  • Baiqi Ning
    • 1
  • Zhipeng Ren
    • 1
  • Lianhuan Hu
    • 1
  1. 1.Beijing National Observatory of Space Environment, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations