Advertisement

GPS Solutions

, Volume 14, Issue 1, pp 121–131 | Cite as

Quality assessment of FORMOSAT-3/COSMIC and GRACE GPS observables: analysis of multipath, ionospheric delay and phase residual in orbit determination

  • Cheinway Hwang
  • Tzu-Pang Tseng
  • Ting-Jung Lin
  • Dražen Švehla
  • Urs Hugentobler
  • Benjamin Fong Chao
Original Article

Abstract

The precise orbit determination antennas of F3/C and GRACE-A satellites are from the same manufacturer, but are installed in different configurations. The current orbit accuracy of F3/C is 3 cm at arcs with good GPS data, compared to 1 cm of GRACE, which has a larger ratio of usable GPS data. This paper compares the qualities of GPS observables from F3/C and GRACE. Using selected satellites and time spans, the following average values for the satellite F3/C and satellite A of GRACE are obtained: multipath effect on the pseudorange P1, 0.78 and 0.38 m; multipath effect on the pseudorange P2, 1.03 and 0.69 m; occurrence frequency of cycle slip, 1/29 and 1/84; standard error of unit weight, 4 and 1 cm; dynamic–kinematic orbit difference, 10 and 2 cm. For gravity determination using F3/C GPS data, a careful selection of GPS data is critical. With six satellites in orbit, F3/C’s large amount of GPS data will make up the deficiency in data quality.

Keywords

Cycle slip FORMOSAT-3/COSMIC GPS GRACE Multipath 

Notes

Acknowledgments

This research is supported by the National Space Organization of Taiwan, under the project “Precise orbit determination and the gravity field determination from FORMOSAT-3/COSMIC data,” contract number 98-NSPO(B)-IC-FA07-01(J).

References

  1. Bock H (2004) Efficient methods for determining precise orbits of low earth orbiters using the global positioning system. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 65, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich, ZürichGoogle Scholar
  2. Chao BF, Pavlis EC, Hwang C, Liu CC, Shum CK, Tseng CL, Yang M (2000) COSMIC: geodetic applications in improving earth’s gravity model. Terrestrial Atmospheric Ocean Sci 11:365–378Google Scholar
  3. Comp CJ, Axelrad P (1998) Adaptive SNR-based carrier phase multipath mitigation technique. IEEE Trans Aerosp Electron Syst 34:264–276CrossRefGoogle Scholar
  4. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software-version 5.0. Astronomical Institute, University of Bern, SwitzerlandGoogle Scholar
  5. Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi: 10.1007/s00190-008-0281-2 CrossRefGoogle Scholar
  6. Estey LH, Meerten CM (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solutions 3(1):42–49CrossRefGoogle Scholar
  7. Fong CJ, Yang SK, Chu CH, Huang CY, Yeh JJ, Lin CT, Kuo TC, Liu TY, Yen NL, Chen SS, Kuo YH, Liou YA, Chi S (2008) FORMOSAT-3/COSMIC constellation spacecraft system performance: after 1 year in orbit. IEEE Trans Geosci Remote Sens 46:3380–3394CrossRefGoogle Scholar
  8. Gurtner W (1994) RINEX: the receiver-independent exchange format. GPS World 4:48–52Google Scholar
  9. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice. Springer Wien New York, ISBN 3-211-83472-9Google Scholar
  10. Hwang C, Lin TJ, Tseng TP, Chao BF (2008) Modeling orbit dynamics of FORMOSAT-3/COSMIC satellites for recovery of temporal gravity variations. IEEE Trans Geosci Remote Sens 46:3412–3423CrossRefGoogle Scholar
  11. Hwang C, Tseng TP, Lin T, Švehla D, Schreiner B (2009) Precise orbit determination for the FORMOSAT-3/COSMIC satellite mission GPS. J Geodesy 83(5):477–489. doi: 10.1007/s00190-008-0256-3 CrossRefGoogle Scholar
  12. Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low Earth orbiters. J Geodesy 80(1):47–60. doi: 10.1007/s00190-006-0029-9 CrossRefGoogle Scholar
  13. Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612–1619CrossRefGoogle Scholar
  14. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, HobokenGoogle Scholar
  15. Montenbruck O, Kroes R (2003) In-flight performance analysis of the CHAMP BlackJack GPS Receiver. GPS Solutions 7:74–86. doi: 10.1007/s10291-003-0055-5 CrossRefGoogle Scholar
  16. Ogaja C, Hedfors J (2007) TEQC multipath metrics in MATLAB. GPS Solutions 11:215–222. doi: 10.1007/s10291-006-0052-6 CrossRefGoogle Scholar
  17. Švehla D, Rothacher M (2003) Kinematic and reduced–dynamic precise orbit determination of low Earth orbiters. Adv Geosci 1:47–56CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Cheinway Hwang
    • 1
  • Tzu-Pang Tseng
    • 1
  • Ting-Jung Lin
    • 1
  • Dražen Švehla
    • 2
  • Urs Hugentobler
    • 2
  • Benjamin Fong Chao
    • 3
  1. 1.Department of Civil EngineeringNational Chiao Tung UniversityHsinchuTaiwan, ROC
  2. 2.Institute of Astronomical and Physical GeodesyTechnical University of MunichMunichGermany
  3. 3.College of Earth SciencesNational Central UniversityTaoyuanTaiwan, ROC

Personalised recommendations