GPS Solutions

, 14:91 | Cite as

FORMOSAT-3/COSMIC observations of the ionospheric auroral oval development

  • Ho-Fang Tsai
  • Jann-Yenq Liu
  • Chien-Hung Lin
  • Mei-Lan Hsu
Original Article

Abstract

The ionospheric radiance and electron density observed by the tiny ionospheric photometer (TIP) and GPS occultation experiment (GOX) payloads on FORMOSAT-3/COSMIC satellites are applied to determine the boundaries of the auroral oval and its width in the winter nighttime ionosphere for both hemispheres. The TIP collects ionospheric emission at 135.6 nm due to electron impact excitation, while the GOX offers ionospheric electron density profiles with radio occultation (RO) technique. Comparison between them shows similar patterns of the plasma structure in the polar caps. The mean width of the auroral bands ranges between about 2 and 11° latitude in the winter nighttime and it varies with longitudes. The comparison by month suggests that the mean radius of the auroral ovals varies with the intensity of the auroral radiance.

Keywords

FORMOSAT-3 COSMIC Ionospheric auroral oval Auroral radiance Tiny ionospheric photometer GPS occultation experiment 

References

  1. Anthes RA et al (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Am Meteorol Soc 89:313–333. doi:10.1175/BAMS-89-3-313 CrossRefGoogle Scholar
  2. Budzien SA, Coker C, Dymond KF, Chua DH (2006) Tiny ionospheric photometer experiment aboard FORMOSAT-3/COSMIC. In: FORMOSAT-3/COSMIC Workshop 2006—early results and IOP campaigns, Taipei, Taiwan, 28 November–1 December 2006Google Scholar
  3. Dymond KF, Nee JB, Thomas RJ (2000) The tiny ionospheric photometer: an instrument for measuring ionospheric gradients for the COSMIC constellation. Terr Atmos Ocean Sci 11:273–290Google Scholar
  4. Dymond KF, Budzien SA, Chua DH, Coker C, Liu JY (2009) Tomographic reconstruction of the low-latitude nighttime electron density using FORMOSAT-3/COSMIC radio occultation and UV photometer data. Terr Atmos Ocean Sci 20:215–226. doi:10.3319/TAO.2008.01.15.01(F3C) CrossRefGoogle Scholar
  5. Kalmanson PC, Budzien SA, Dymond KF (2004) The tiny ionospheric photometer instrument design and operation. Proc SPIE 5660:259. doi:10.1117/12.578341 CrossRefGoogle Scholar
  6. Kelley MC (1989) The Earth’s ionosphere: plasma physics and electrodynamics. Academic Press, San DiegoGoogle Scholar
  7. Lei J, Syndergaard S, Burns AG, Solomon SC, Wang W, Zeng Z, Roble RG, Wu Q, Kuo Y-H, Holt JM, Zhang S-R, Hysell DL, Rodrigues FS, Lin CH (2007) Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J Geophys Res 112:A07308. doi:10.1029/2006JA012240 CrossRefGoogle Scholar
  8. Syndergaard S, Schreiner WS, Rocken C, Hunt DC, Dymond KF (2006) Preparing for COSMIC: inversion and analysis of ionospheric data products. In: Foelsche U, Kirchengast G, Steiner AK (eds) Atmosphere and climate: studies by occultation methods. Springer, Berlin, pp 37–146Google Scholar
  9. Wu BH, Chu V, Chen P, Ting T (2005) FORMOSAT-3/COSMIC science mission update. GPS Solut 9:111–121. doi:10.1007/s10291-005-0140-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ho-Fang Tsai
    • 1
  • Jann-Yenq Liu
    • 2
    • 3
  • Chien-Hung Lin
    • 4
    • 5
  • Mei-Lan Hsu
    • 6
    • 7
  1. 1.Taiwan Data Analysis for COSMIC (TACC)Central Weather BureauTaipeiTaiwan
  2. 2.Institute of Space ScienceNational Central UniversityJhong-LiTaiwan
  3. 3.Center for Space and Remote Sensing ResearchNational Central UniversityJhong-LiTaiwan
  4. 4.Institute of Space, Astrophysics and Plasma ScienceNational Cheng Kung UniversityTainanTaiwan
  5. 5.Plasma and Space Science CenterNational Cheng Kung UniversityTainanTaiwan
  6. 6.Earth Dynamic System Research CenterNational Cheng Kung UniversityTainanTaiwan
  7. 7.Department of PhysicsNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations