GPS Solutions

, Volume 14, Issue 1, pp 13–22 | Cite as

Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing

  • William Schreiner
  • Chris Rocken
  • Sergey Sokolovskiy
  • Doug Hunt
Original Article

Abstract

This study evaluates the quality of GPS radio occultation (RO) atmospheric excess phase data derived with single- and double-difference processing algorithms. A spectral analysis of 1 s GPS clock estimates indicates that a sampling interval of 1 s is necessary to adequately remove the GPS clock error with single-difference processing. One week (May 2–8, 2009) of COSMIC/FORMOSAT-3 data are analyzed in a post-processed mode with four different processing strategies: (1) double-differencing with 1 s GPS ground data, (2) single-differencing with 30 s GPS clock estimates (standard COSMIC Data Analysis and Archival Center product), (3) single-differencing with 5 s GPS clocks, and (4) single-differencing with 1 s GPS clocks. Analyses of a common set of 5,596 RO profiles show that the neutral atmospheric bending angles and refractivities derived from single-difference processing with 1 s GPS clocks are the highest quality. The random noise of neutral atmospheric bending angles between 60 and 80 km heights is about 1.50e−6 rad for the single-difference cases and 1.74e−6 rad for double-differencing. An analysis of pairs of collocated soundings also shows that bending angles derived from single-differencing with 1 s GPS clocks are more consistent than with the other processing strategies. Additionally, the standard deviation of the differences between RO and high-resolution European Center for Medium range Weather Forecasting (ECMWF) refractivity profiles at 30 km height is 0.60% for single-differencing with 1 and 5 s GPS clocks, 0.68% for single-differencing with 30 s clocks, and 0.66% for double-differencing. A GPS clock-sampling interval of 1 s or less is required for single- and zero-difference processing to achieve the highest quality excess atmospheric phase data for RO applications.

Keywords

GPS radio occultation Phase Single difference 

References

  1. Ashby N (2003) Relativity in the global positioning system, Living Rev. Relativity, 6. http://www.livingreviews.org/lrr-2003-1
  2. Bartholomew CA, Satellite Frequency Standards (1980) Global positioning system, vol 1, Navigation, Washington, DC. ISBN 0-936406-00-3Google Scholar
  3. Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32:L13806. doi:10.1029/2005GLo23109 CrossRefGoogle Scholar
  4. Bock H, Beutler G, Schaer S, Springer TA, Rothacher M (2000) Processing aspects related to permanent GPS arrays. Earth Planets Space 52:657–662Google Scholar
  5. Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) User manual of the Bernese GPS Software Version 5.0. Astronomical Institute, University of Berne, Switzerland Jan 2007Google Scholar
  6. Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS (2002) A technical description of atmospheric sounding by GPS occultation. J Atmos Sol Terr Phys 64(4):451–469CrossRefGoogle Scholar
  7. Hwang C, Tseng TP, Ling T, Svehla D, Schreiner B (2008) Precise orbit determination for the FORMOSAT-3/COSMIC satellite mission using GPS. J Geod. doi:10.1007/s00190-008-0256-3
  8. Kuo Y-H, Wee T-K, Sokolovskiy S, Rocken C, Schreiner W, Hunt D, Anthes RA (2004) Inversion and error estimation of GPS radio occultation data. J Met Soc Japan 82(1B):507–531CrossRefGoogle Scholar
  9. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing earth’s atmosphere with radio occultation measurements using the Global Positioning System. JGR, 102, D19, 23, 429–423, 465Google Scholar
  10. Lohmann M (2005) Application of dynamical error estimation for statistical optimization of radio occultation bending angles. Radio Sci 40:RS3011. doi:10.1029/2004RS003117 CrossRefGoogle Scholar
  11. Reigber C, Schwintzer P, Koenig R, Neumayer K-H, Bode A, Barthelmes F, Foerste Ch (GFZ Potsdam), Balmino G, Biancale R, Lemoine J-M, Loyer S, Perosanz F (GRGS, Toulouse) (2001) Earth gravity field solutions from several months of CHAMP satellite data. Eos Trans AGU 82 (47), Fall Meeting Suppl G4IC-02Google Scholar
  12. Rocken C, Anthes R, Exner M, Hunt D, Sokolovskiy S, Ware R, Gorbunov M, Schreiner W, Feng D, Herman B, Kuo Y-H, Zou X (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102, 29,849–829, 860Google Scholar
  13. Schreiner WS, Hunt DC, Rocken C, Sokolovskiy SV (1998) Precise GPS data processing for the GPS/MET radio occultation mission at UCAR. In: Proceedings of the Institute of Navigation—Navigation 2000, Alexandria Va, pp 103–112Google Scholar
  14. Schreiner WS, Rocken C, Hunt D (2005) Approach and quality assessment of single difference processing of GPS radio occultation data at the UCAR CDAAC, A43A-0066, AGU Fall Meeting, San Francisco, CA, December 11–15, 2005Google Scholar
  15. Senior KL, Ray JR, Beard RL (2008) Characterization of periodic variations in the GPS satellite clocks. GPS Solut. doi:10.1007/s10291-008-0089-9
  16. Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. J Res Natl Bur Stand 50:29–41Google Scholar
  17. Sokolovskiy SV, Hunt D (1996) Statistical optimization approach for GPS/MET data inversions, presentation at URSI GPS/MET Workshop, Tucson, AZGoogle Scholar
  18. Sokolovskiy S, Kuo Y-H, Wang W (2005) Assessing the accuracy of a linearized observation operator for assimilation of radio occultation data: case simulations with a high-resolution weather model. Mon Weather Rev 133:2200–2212CrossRefGoogle Scholar
  19. Sokolovskiy SV, Schreiner W, Rocken C, Hunt D (2008) Optimal noise filtering for the ionospheric correction of GPS radio occultation signals. J Atmos Ocean Technol (in press)Google Scholar
  20. Svehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv Geosci 1:47–56CrossRefGoogle Scholar
  21. Vorob’ev VV, Krasilnikova TG (1994) Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system. Izv Russ Acad Sci Atmos Ocean Phys (Engl Transl) 29:602–609Google Scholar
  22. Wickert J, Beyerle G, Hajj GA, Schwieger V, Reigber C (2002) GPS radio occultation with CHAMP: atmospheric profiling utilizing the space-based single difference technique. GRL 29(8). doi:10.1029/2001GL13982

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • William Schreiner
    • 1
  • Chris Rocken
    • 1
  • Sergey Sokolovskiy
    • 1
  • Doug Hunt
    • 1
  1. 1.UCARBoulderUSA

Personalised recommendations