GPS Solutions

, 14:3 | Cite as

Phase acceleration: a new important parameter in GPS occultation technology

  • A. G. Pavelyev
  • Y. A. Liou
  • J. Wickert
  • T. Schmidt
  • A. A. Pavelyev
Original Article


Based on 40 years of radio-occultation (RO) experiments, it is now recognized that the phase acceleration of radio waves (equal to the time derivative of the Doppler shift), derived from analysis of high-stability Global Positioning System (GPS) RO signals, is as important as the Doppler frequency. The phase acceleration technique allows one to convert the phase and Doppler frequency changes into refractive attenuation variations. From such derived refractive attenuation and amplitude data, one can estimate the integral absorption of radio waves. This is important for future RO missions when measuring water vapor and minor atmospheric gas constituents, because the difficulty of removing the refractive attenuation effect from the amplitude data can be avoided. The phase acceleration technique can be applied also for determining the location and inclination of sharp layered plasma structures (including sporadic Es layers) in the ionosphere. The advantages of the phase acceleration technique are validated by analyzing RO data from the Challenging Minisatellite Payload (CHAMP) and the FORMOSA Satellite Constellation Observing Systems for Meteorology, Ionosphere, and Climate missions (FORMOSAT-3/COSMIC).


Radio occultation Phase acceleration Doppler frequency 



We are grateful to NSPO (Taiwan) and UCAR (USA) for making FORMOSAT3 experimental RO data available. This work was jointly supported by the Russian Foundation for Basic Research, project no. 06-02-17071, the National Science Council of Taiwan, grant no. NSC 96-2811-M-008-061, and the NSPO (Taiwan), grant no. 97-NSPO(B)-SP-FA07-03(F).


  1. Fong CJ, Shiau WT, Lin CT, Kuo TC, Chu CH, Yang SK, Yen N, Chen SS, Kuo YH, Liou YA, Chi S (2008a) Constellation deployment for FORMOSAT-3/COSMIC mission. IEEE Trans Geosci Remote Sens 46(11):3367–3379. doi:10.1109/TGRS.2008.2005202 CrossRefGoogle Scholar
  2. Fong CJ, Yang S-K, Chu CH, Huang CY, Yeh JJ, Lin CT, Kuo TC, Liu TY, Yen N, Chen SS, Kuo YH, Liou YA, Chi S (2008b) FORMOSAT-3/COSMIC constellation spacecraft system performance: after one year in orbit. IEEE Trans Geosci Remote Sens 46(11):3380–3394. doi:10.1109/TGRS.2008.2005203 CrossRefGoogle Scholar
  3. Gorbunov ME, Bengtson L (1996) Advanced algorithms of inversion of GPS/MET satellite data and their application to reconstruction of temperature and humidity. Tech. Rep Report No. 211, Max Planck Institute for Meteorology, HamburgGoogle Scholar
  4. Gorbunov ME, Lauritsen KB (2002) Canonical transform methods for radio occultation data. Scientific Report 02-10 Danish Meteorological Institute, CopenhagenGoogle Scholar
  5. Gorbunov ME, Gurvich AS, Shmakov AV (2002) Back-propagation and radio-holographic methods for investigation of sporadic ionospheric E-layers from Microlab-1 data. Int J Remote Sens 23(4):675–685. doi:10.1080/01431160010030091 CrossRefGoogle Scholar
  6. Gurvich AS, Krasil’nikova TG (1987) Radio occultation investigation of the atmosphere with usage GPS satellites. Cosm Res 25(6):89–95Google Scholar
  7. Hajj GA, Kursinski ER, Romans LJ et al (2002) Technical description of atmospheric sounding by GPS occultation. J Atmos Sol Terr Phys 64:451–469. doi:10.1016/S1364-6826(01)00114-6 CrossRefGoogle Scholar
  8. Hinson DP, Flasar FM, Schinder A, Twicken JD, Herrera RG (1997) Jupiter’s ionosphere: results from the first Galileo radio occultation experiment. Geophys Res Lett 24(18):2107–2110. doi:10.1029/97GL01608 CrossRefGoogle Scholar
  9. Hocke KA, Pavelyev AG, Yakovlev OI, Barthes L, Jakowski N (1999) Radio occultation data analysis by the radioholographic method. J Atmos Sol Terr Phys 61(16):1169–1178. doi:10.1016/S1364-6826(99)00080-2 CrossRefGoogle Scholar
  10. Igarashi K, Pavelyev AG, Hocke K, Kucherjavenkov A, Matugov S, Yakovlev O, Pavelyev D, Zakharov A (2000) Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data. Earth Planets Space 52(11):868–875Google Scholar
  11. Igarashi K, Pavelyev A, Hocke K, Pavelyev D, Wickert J (2001) Observation of wave structures in the upper atmosphere by means of radio holographic analysis of the radio occultation data. Adv Space Res 27(6–7):1321–1327CrossRefGoogle Scholar
  12. Igarashi K, Pavelyev A, Wickert J, Hocke K, Pavelyev D (2002) Application of radio holographic method for observation of altitude variations of the electron density in the mesosphere/lower thermosphere using GPS/MET radio occultation data. J Atmos Sol Terr Phys 64(4):959–969. doi:10.1016/S1364-6826(02)00050-0 CrossRefGoogle Scholar
  13. Jensen AS, Lohmann M, Benzon HH, Nielsen AS (2003) Full spectrum inversion of radio occultation signals. Radio Sci 38(3):1040. doi:10.1029/2002RS002763 CrossRefGoogle Scholar
  14. Kalashnikov IE, Matyugov SS, Pavelyev AG, Yakovlev OI (1986) Electromagnetic waves in the atmosphere and space. Nauka, Moscow, pp 208–218 (in Russian)Google Scholar
  15. Kelly MC (1989) The Earth’s Ionosphere. Int. Geophys. Ser. 43 Elsevier, New YorkGoogle Scholar
  16. Kislyakov AG, Stankevich KS (1967). Absorption of Radio Waves in the Atmosphere Izv Vyssh Uchebn Zaved Radiophyz 10(9–10):1244–1270 (in Russian)Google Scholar
  17. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing the Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23,429–23,465. doi:10.1029/97JD01569 CrossRefGoogle Scholar
  18. Lindal GF, Lyons JR, Sweetnam DN, Eshleman VR, Hinson DP, Tyler GL (1987) The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2. J Geophys Res 92(A13):14,987–15,001. doi:10.1029/JA092iA13p14987 CrossRefGoogle Scholar
  19. Liou YA, Pavelyev AG, Wickert J, Schmidt T, Pavelyev AA (2005) Analysis of atmospheric and ionospheric structures using the GPS/MET and CHAMP radio occultation database: a methodological review. GPS Solut 9:122–143. doi:10.1007/s10291-005-0141-y CrossRefGoogle Scholar
  20. Liou YA, Pavelyev AG, Liu SF, Pavelyev AA, Yen N, Huang CY, Fong CJ (2007) FORMOSAT-3 GPS radio occultation mission: preliminary results. IEEE Trans Geosci Remote Sens 45(10):3813–3826. doi:10.1109/TGRS.2007.903365 CrossRefGoogle Scholar
  21. Liu AS (1978) On the determination and investigation of the terrestrial ionospheric refractive indices using GEOS-3/ATS-6 satellite-to-satellite tracking data. Radio Sci 13(4):709–716. doi:10.1029/RS013i004p00709 CrossRefGoogle Scholar
  22. Liou YA, Pavelyev, AG (2006) Simultaneous observations of radio wave phase and intensity variations for locating the plasma layers in the ionosphere. Geophys Res Lett 33(23):L23102 1–5Google Scholar
  23. Lohman MS, Jensen AS, Benson HH, Nielsen AS (2003) Radio occultation retrieval of atmospheric absorption based on FSI. Report 03-22 Danish Meteorological Institute, CopenhagenGoogle Scholar
  24. Marouf EA, Tyler GL, Rosen PA (1986) Profiling Saturn rings by radio occultation. Icarus 68:120–166. doi:10.1016/0019-1035(86)90078-3 CrossRefGoogle Scholar
  25. Melbourne WG (2004) Radio occultations using Earth satellites: a wave theory treatment. Jet Propulsion Laboratory California Institute of Technology, Monograph 6 Deep space communications and navigation seriesGoogle Scholar
  26. Mortensen MD, Hoeg P (1998) Inversion of GPS occultation measurements using Fresnel diffraction theory. Geophys Res Lett 25(14):2446–2449Google Scholar
  27. Pavelyev AG (1998) On the feasibility of radioholographic investigations of wave fields near the Earth’s radioshadow zone on the satellite-to-satellite path. J Commun Technol Electron 43(8):875–879Google Scholar
  28. Pavelyev AG, Volkov AV, Zakharov AI, Krutikh SA, Kucherjavenkov AI (1996) Bistatic radar as a tool for earth investigation using small satellites. Acta Astronaut 39(9–12):721–730. doi:10.1016/S0094-5765(97)00055-6 CrossRefGoogle Scholar
  29. Pavelyev AG, Zakharov AI, Kucheryavenkov AI, Molotov EP, Sidorenko AI, Kucheryavenkova IL, Pavelyev DA (1997) Propagation of radio waves reflected from Earth’s surface at grazing angles between a low-orbit space station and a geostationary satellite. J Commun Technol Electron 42(1):51–57Google Scholar
  30. Pavelyev AG, Igarashi K, Reigber C, Hocke K, Wickert J, Beyerle G, Matyugov S, Kucherjavenkov A, Pavelyev D, Yakovlev OI (2002) First application of the radio holographic method to wave observations in the upper atmosphere. Radio Sci 37(3):15-1–15-11Google Scholar
  31. Pavelyev AG, Liou YA, Wickert J (2004) Diffractive vector and scalar integrals for bistatic radio-holographic remote sensing. Radio Sci 39(4):RS4011 1–16Google Scholar
  32. Pavelyev AG, Liou YA, Wickert J, Schmidt T, Pavelyev AA, Liu SF (2007) Effects of the ionosphere and solar activity on radio occultation signals: application to Challenging Minisatellite Payload satellite observations. J Geophys Res 112(A06326):1–14. doi:10.1029/2006JA011625 Google Scholar
  33. Rangaswamy S (1976) Recovery of Atmospheric Parameters from the Apollo/Soyuz-ATS-F Radio Occultation Data. Geophys Res Lett 3(8):483–486. doi:10.1029/GL003i008p00483 CrossRefGoogle Scholar
  34. Rocken C, Anthes R, Exner M et al (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102:29849–29866. doi:10.1029/97JD02400 CrossRefGoogle Scholar
  35. Sokolovskiy SV (2001) Modeling and inverting radio occultation signals in the moist troposphere. Radio Sci 36(3):441–458. doi:10.1029/1999RS002273 CrossRefGoogle Scholar
  36. Sokolovskiy SV, Schreiner W, Rocken C, Hunt D (2002) Detection of high-altitude ionospheric irregularities with GPS/MET. Geophys Res Lett 29(3):1033–1037. doi:10.1029/2001GL013398 CrossRefGoogle Scholar
  37. Ware R, Exner M, Feng D, Gorbunov M et al (1996) GPS sounding of the atmosphere from low Earth orbit: preliminary results. Bull Am Meteorol Soc 77(1):19–40. doi:10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2 CrossRefGoogle Scholar
  38. Wickert J, Pavelyev AG, Liou YA, Schmidt T, Reigber Ch, Igarashi K, Pavelyev AA, Matyugov SS (2004) Amplitude scintillations in GPS signals as a possible indicator of ionospheric structures. Geophys Res Lett 31(24):L24801 1–4Google Scholar
  39. Wu Dong L, Ao Chi O, Hajj GA, Manuel de la Torre Juarez, Mannucci AJ (2005) Sporadic E morphology from GPS-CHAMP radio occultation. J Geoph Res 110: A01306 1–18Google Scholar
  40. Yakovlev OI (2003) Space Radio Science. Taylor and Francis, LondonGoogle Scholar
  41. Yakovlev OI, Matyugov SS, Vilkov IA (1995) Attenuation and scintillation of radio waves in the Earth’s atmosphere in radio occultation experiments on the satellite-to-satellite link. Radio Sci 30:591–600. doi:10.1029/94RS01920 CrossRefGoogle Scholar
  42. Yunck T, Lindal G, Liu CH (1988) The role of GPS in precise Earth observations. Proceedings of the IEEE Position Location and Navigation Symposium. Orlando, FloridaGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • A. G. Pavelyev
    • 1
  • Y. A. Liou
    • 2
  • J. Wickert
    • 3
  • T. Schmidt
    • 3
  • A. A. Pavelyev
    • 1
  1. 1.Institute of Radio Engineering and Electronics of Russian Academy of Sciences (IRE RAS)MoscowRussia
  2. 2.Center for Space and Remote Sensing ResearchNational Central UniversityChung-LiTaiwan
  3. 3.GeoForschungsZentrum Potsdam (GFZ-Potsdam)PotsdamGermany

Personalised recommendations