GPS Solutions

, Volume 13, Issue 3, pp 231–239 | Cite as

Analysis of inversion errors of ionospheric radio occultation

  • Xiaocheng Wu
  • Xiong Hu
  • Xiaoyan Gong
  • Xunxie Zhang
  • Xin Wang
Original Article

Abstract

The retrieved electron density profile of ionospheric radio occultation (RO) simulation data can be compared with the background model value during the simulation and the inversion error can be obtained exactly. This paper studies the inversion error of ionospheric RO through simulation. The sources of the inversion errors are analyzed. The impacts of measurement errors, such as the errors in phase measurements and satellite orbits, are very small and can be neglected. The approximation of straight-line propagation introduces errors at the height of the F1 layer under solar maximum condition. The spherical symmetry approximation of the electron density distribution is found to be the main source of the inversion error. The statistical results reveal some characteristics of the inversion errors. (1) The relative error increases with enhanced solar activity. (2) It is larger in winter than in equinox season, and it is smallest in summer. (3) For all seasons, it is smaller at middle latitude than at other latitudes. (4) For all seasons and geomagnetic latitudes, it is smaller at daytime than at other times. The NmF2 of the ROs from COSMIC are compared with the measurements of ionosondes, and the relative differences show the same dependencies on season, geomagnetic latitude and local time, as the relative errors of the simulated ionospheric ROs.

Keywords

Ionospheric radio occultation Error source Simulation Asymmetry of electron density COSMIC 

References

  1. Beyerle G, Schmidt T, Michalak et al (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32(13):L13806. doi:10.1029/2005GL023109
  2. Budden KG (1985) The propagation of radio waves. Cambridge University Press, CambridgeGoogle Scholar
  3. Fjeldbo G, Eshleman VR (1969) Atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment. Radio Sci 4:879–897. doi:10.1029/RS004i010p00879 CrossRefGoogle Scholar
  4. Fjeldbo GF, Kliore AJ, Eshleman VR (1971) The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron J 76:123–140. doi:10.1086/111096 CrossRefGoogle Scholar
  5. Garcia-Fernandez M, Hernandez-Pajare M, Juan M et al (2003) Improvement of ionospheric electron density estimation with GPS/MET occultations using Abel inversion and VTEC information. J Geophys Res 108(A9):1338. doi:10.1029/2003JA009952 CrossRefGoogle Scholar
  6. Garcia-Fernandez M, Hernandez-Pajares M, Juan JM et al (2005) Performance of the improved Abel transform to estimate electron density profiles from GPS occultation data. GPS Solut 9:105–110. doi:10.1007/s10291-005-0139-5 CrossRefGoogle Scholar
  7. Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the global positioning system: results from the GPS/MET experiment. Radio Sci 33:175–190. doi:10.1029/97RS03183 CrossRefGoogle Scholar
  8. Hajj GA, Lee IC, Pi X et al (2000) COSMIC GPS ionospheric sensing and space weather. Terres Atmos Ocean Sci 11(1):235–272Google Scholar
  9. Hajj GA, Ao CO, Iijima BA et al (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res Atmos 109(D6):D06109. doi:10.1029/2003JD003909 CrossRefGoogle Scholar
  10. Haselgrove J (1963) The Hamilton ray path equations. J Atmos Terres Phys 25:397–399. doi:10.1016/0021-9169(63)90173-9 CrossRefGoogle Scholar
  11. Høeg P, Hauchecorne A, Kirchengast G et al (1995) Derivation of atmospheric properties using a radio occultation technique, scientific report 95-4, Danish Meteorological Institute, CopenhagenGoogle Scholar
  12. Høeg P, Larson GB, Benzon H et al (1998) GPS atmosphere profiling methods and error assessments, scientific report 98-7, Danish Meteorological Institute, CopenhagenGoogle Scholar
  13. Jakowski N (2005) Ionospheric GPS radio occultation measurements on board CHAMP. GPS Solut 9:88–95. doi:10.1007/s10291-005-0137-7 CrossRefGoogle Scholar
  14. Jakowski N, Wehrenpfennig A, Heise S et al (2002) GPS radio occultation measurements of the ionosphere from CHAMP: early results. Geophys Res Lett 29(10):1457. doi:10.1029/2001GL014364 CrossRefGoogle Scholar
  15. Kirchengast G, Fritzer J, Ramsauer J (2002) End-to-end GNSS occultation performance simulator version 4 (EGOPS4) software user manual (overview and reference manual). Tech Rep ESA/ESTEC-3/2002, IGAM, University of Graz, Austria, p 44Google Scholar
  16. Kursinski ER, Hajj GA, Schofield JT et al (1997) Observing earth’s atmosphere with radio occultation measurements using the global positioning system. J Geophys Res 102(D19):23429–23465. doi:10.1029/97JD01569 CrossRefGoogle Scholar
  17. Lei J, Syndergaard S, Burns AG et al (2007) Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J Geophys Res 112(A7):A07308. doi:10.1029/2006JA012240 CrossRefGoogle Scholar
  18. Leitinger R, Titheridge JE, Kirchengast G, Rothleitner W (1996) A simple global empirical model for the F layer of the ionosphere. Kleinheubacher Ber 39:697–704Google Scholar
  19. Montenbruck O, Andres Y, Bock H et al (2008) Tracking and orbit determination performance of the GRAS instrument on MetOp-A. GPS Solut 12:289–299. doi:10.1007/s10291-008-0091-2 CrossRefGoogle Scholar
  20. Schreiner W, Sokolvskiy SV, Rocken C et al (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci 34(4):949–966. doi:10.1029/1999RS900034 CrossRefGoogle Scholar
  21. Schreiner W, Rocken C, Sokolovskiy et al. (2007) Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34(4):L04808(1–5)Google Scholar
  22. Stolle C, Jakowski N, Schlegel K et al (2004) Comparison of high latitude electron density profiles obtained with the GPS radio occultation technique and EISCAT measurements. Ann Geophys 22(6):2015–2028CrossRefGoogle Scholar
  23. Straus P (2005) Ionospheric climatology derived from GPS occultation observations made by the ionospheric occultation experiments. GPS Solut 9:164–173. doi:10.1007/s10291-005-0145-7 CrossRefGoogle Scholar
  24. Straus PR, Anderson PC, Danaher JE (2003) GPS occultation sensor observations of ionospheric scintillation. Geophys Res Lett 30(8):1436. doi:10.1029/2002GL016503 CrossRefGoogle Scholar
  25. Syndergaard S, Schreiner WS, Rocken C, Hunt DC, Dymond KF (2006) Preparing for COSMIC: inversion and analysis of ionospheric data products. In: Foelsche U, Kirchengast G, Steiner AK (eds) Atmosphere and climate: studies by occultation methods. Springer, Berlin, pp 137–146Google Scholar
  26. Tsai LC, Tsai WH, Schreiner WS et al (2001) Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data. Earth Planets Space 53:193–205Google Scholar
  27. Wickert J et al (2001) Atmosphere sounding by GPS ratio occultation: first results from CHAMP. Geophys Res Lett 28:3263–3266. doi:10.1029/2001GL013117 CrossRefGoogle Scholar
  28. Zhang XJ, Hoeg P, Larsen GB et al (2002) Preliminary results of ionospheric electron density obtained from Oersted/GPS occultation and grounded radar joint observation. GNSS World China 25(3):1–5 in ChineseGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Xiaocheng Wu
    • 1
    • 2
  • Xiong Hu
    • 1
  • Xiaoyan Gong
    • 1
    • 2
  • Xunxie Zhang
    • 3
  • Xin Wang
    • 1
  1. 1.Center for Space Science and Applied ResearchChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina

Personalised recommendations