Advertisement

GPS Solutions

, Volume 13, Issue 2, pp 83–95 | Cite as

Total electron content processing from GPS observations to facilitate ionospheric modeling

  • Angeline G. BurrellEmail author
  • Nelson A. Bonito
  • Charles S. Carrano
Original Article

Abstract

With the increasing global distribution of high rate dual-frequency global positioning system (GPS) receivers, the production of a real-time atmospheric constituent definition, total electron content (TEC), has become a beneficial contributor to the modeling applications used in the assessment of GPS position accuracy and the composition of the ionosphere, plasmasphere, and troposphere. Historically, TEC measurements have been obtained through post processing techniques to produce the quality of data necessary for modeling applications with rigorous error estimate requirements. These procedures necessitated the collection of large volumes of data to address the various abnormalities in the computation of TEC associated with the use of greater data quality controls and source selection while real-time modeling environments must rely on autonomous controls and filtration techniques to prevent the production of erroneous model results. In this paper we present methods for processing TEC in real time, which utilize several procedures including the application of an ionospheric model to automatically perform quality control on the TEC output and the computational techniques used to address receiver multipath, faulty receiver observations, cycle-slips, segmented processing, and receiver calibrations. The resulting TEC measurements are provided with rigorous error estimates validated using the vertical TEC from the Jason satellite mission.

Keywords

GPS observations Ionosphere Algorithms TEC processing Total electron content Real-time processing Ionosphere Validation 

Abbreviations

GPS

Global positioning system

TEC

Total electron content

CDDIS

Crustal dynamics data information system

RINEX

Receiver independent exchange

CODE

Center for Orbit Determination in Europe

IPP

Ionospheric penetration point

UHF

Ultra-high frequency

PIM

Parameterized ionospheric model

URSI

Union of radio science

IQR

Interquartile range

Notes

Acknowledgments

The authors are grateful to all colleagues of the Communication/Navigation Outage Forecasting System team and the Air Force Research Laboratory for providing valuable discussions and suggestions. We thank Dr. Laila S. Jeong for encouraging the implementation of this research and Dr. Brian Wilson of the Jet Propulsion Laboratory for providing the Jason TEC.

References

  1. Araujo-Pradere EA, Fuller-Rowell TJ, Spencer PSJ, Minter CF (2007) Differential validation of the US-TEC model. Radio Sci 42–RS3016, doi:  10.1029/2006RS003459
  2. Balan N, Otsuka Y, Tsugawa T, Miyazaki S, Ogawa T, Shiokawa K (2002) Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet condidtions at high solar activity. EPS 54:71–79Google Scholar
  3. Bishop G, Coco D, Kappler P, Holland E (1994) Studies and performance of a new technique for mitigation of pseudorange multipath effects in GPS ground stations. In: Proceedings of the 7th Inst Tech Meeting, Satellite Division of the U.S. ION, San Diego, pp 655–666Google Scholar
  4. Blewitt G (1990) An automated editing algorithm for GPS data. Geophys Res Lett 17(3):199–202. doi: 10.1029/GL017i003p00199 CrossRefGoogle Scholar
  5. Carrano C, Quinn R, Groves M, Anghel A, Codrescu M (2008) Kalman filter estimation of plasmaspheric TEC using GPS. In: Proceedings of IES-2008, IES, AlexandriaGoogle Scholar
  6. Carrano C, Groves K (2006) The GPS segment of the AFRL-SCINDA global network and the challenges of real-time TEC estimation in the equatorial ionosphere. In: Proceedings of the institute of navigation technical meeting, ION, MontereyGoogle Scholar
  7. Coco D, Coker C, Bishop G (1993) A realtime GPS ionospheric monitor system. Proceedings of IES-1993, AlexandriaGoogle Scholar
  8. Coster AJ, Gaposchkin EM, Thornton LE (1992) Real-time ionospheric monitoring system using GPS. Navigation. J ION 39:2Google Scholar
  9. Daniell R Jr, Brown L, Anderson D, Fox M, Doherty P, Decker D, Sojka J, Schunk R (1995) Parameterized ionospheric model: a global ionospheric parameterization based on first principles models. Radio Sci 30(5):1499–1510CrossRefGoogle Scholar
  10. Datta-Barua S, Doherty P, Dehel T, Klobuchar J (2003) Ionospheric scintillation effects on single and dual frequency GPS positioning. In: Proceedings of the institute of navigation GPS/GNNS Meeting, ION, PortlandGoogle Scholar
  11. Feltons J (2003) The international GPS service (IGS) ionosphere working group. Adv Space Sci 31(3):635–644. doi: 10.1016/S0273-1177(03)00029-2 CrossRefGoogle Scholar
  12. Fuller-Rowell T, Araujo-Pradere E, Minter C, Codrescu M, Spencer P, Robertson D et al (2006) US-TEC: a new data assimilation product from the space environment center characterizing the ionospheric total electron content using real-time GPS data. Radio Sci 41: RS6003. doi:  10.1029/2005RS003393
  13. Gurtner W, Mader G, MacArthur D (1989) A common exchange format for GPS data. GPS Bull 2(3):1–11Google Scholar
  14. Gurtner W, Mader G (1990) Receiver independent exchange format version 2. GPS Bull 3(3):1–8Google Scholar
  15. Hatanaka Y (1996a) Compact RINEX format and tools (beta-test version). In: IGS workshop proceedings: 1996 analysis center workshop of IGS, Silver Springs, pp 121–129Google Scholar
  16. Hatanaka Y (1996b) A RINEX compression format and tools. In: Proceedings of ION GPS-96, Kansas City, pp 177–183Google Scholar
  17. Klobuchar J (1996) Ionospheric effects on GPS. In: Parkinson B, Spilker J (ed) Global positioning system: theory and applications, vol 1, Chap 12, AIAA, Washington, pp 485–514Google Scholar
  18. Komjathy A, Sparks L, Wilson B, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers to study intense ionospheric storms. Radio Sci 40: RS6006. doi: 10.1029/2005RS003279
  19. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric electron content measurements. Radio Sci 33:565–582CrossRefGoogle Scholar
  20. Menard Y, Fu LL, Escudier P, Parisot F, Perbos J, Vincet P et al (2003) The Jason-1 mission. Mar Geod 26:131–146. doi: 10.1080/714044514 CrossRefGoogle Scholar
  21. Ping J, Matsumoto K, Heki K, Saito A, Callahan P, Potts L et al (2004) Validation of Jason-1 nadir ionosphere TEC using GEONET. Mar Geod 27:741–752. doi: 10.1080/01490410490889049 CrossRefGoogle Scholar
  22. Press WH, Teukolsty SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, pp 661–666Google Scholar
  23. Rideout W, Coster A (2006) Automated GPS processing for global total electron content data, GPS Sol. doi: 10.1007/s10291-006-0029-5
  24. Sardón E, Ruis A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Sci 29:577–586CrossRefGoogle Scholar
  25. Sardón E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32:1899–1910CrossRefGoogle Scholar
  26. Schaer S, Gurtner W (1998) IONEX: the ionosphere map exchange format version 1. In: Proceedings of the IGS AC workshop, DarmstadtGoogle Scholar
  27. Schunk R, Scherliess L, Sojka J, Thompson D, Anderson D, Codrescu M, Minter C, Fuller-Rowell T, Heelis R, Hairston M, Howe B (2004) Global assimilation of ionospheric measurements (GAIM). Radio Sci 39:RS1S02CrossRefGoogle Scholar
  28. Wang C, Hajj G, Rosen IG, Wilson BD (2004) Development of the global assimilative ionospheric model. Radio Sci 39:RS1S06CrossRefGoogle Scholar
  29. Wilson BD (2007) Private communicationGoogle Scholar
  30. Wilson BD, Mannucci AJ (1993) Instrumental biases in ionospheric measurements derived from GPS data. In: Proceedings of the institute of navigation GPS-93, ION, pp 1343–1351Google Scholar
  31. Wilson BD, Mannucci AJ, Edwards CD (1995) Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers. Radio Sci 30:639–648CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Angeline G. Burrell
    • 1
    Email author
  • Nelson A. Bonito
    • 1
  • Charles S. Carrano
    • 1
  1. 1.AER Inc.LexingtonUSA

Personalised recommendations