Advertisement

GPS Solutions

, Volume 11, Issue 4, pp 295–299 | Cite as

Computer algebra solution of the GPS N-points problem

  • Béla PalánczEmail author
  • Joseph L. Awange
  • Erik W. Grafarend
GPS Tool Box

Abstract

A computer algebra solution is applied here to develop and evaluate algorithms for solving the basic GPS navigation problem: finding a point position using four or more pseudoranges at one epoch (the GPS N-points problem). Using Mathematica 5.2 software, the GPS N-points problem is solved numerically, symbolically, semi-symbolically, and with Gauss–Jacobi, on a work station. For the case of N > 4, two minimization approaches based on residuals and distance norms are evaluated for the direct numerical solution and their computational duration is compared. For N = 4, it is demonstrated that the symbolic computation is twice as fast as the iterative direct numerical method. For N = 6, the direct numerical solution is twice as fast as the semi-symbolic, with the residual minimization requiring less computation time compared to the minimization of the distance norm. Gauss–Jacobi requires eight times more computation time than the direct numerical solution. It does, however, have the advantage of diagnosing poor satellite geometry and outliers. Besides offering a complete evaluation of these algorithms, we have developed Mathematica 5.2 code (a notebook file) for these algorithms (i.e., Sturmfel’s resultant, Dixon’s resultants, Groebner basis, reduced Groebner basis and Gauss–Jacobi). These are accessible to any geodesist, geophysicist, or geoinformation scientist via the GPS Toolbox (http://www.ngs.noaa.gov/gps-toolbox/exist.htm) website or the Wolfram Information Center (http://library.wolfram.com/infocenter/MathSource/6629/).

Keywords

GPS CAS Positioning Algebra 

Notes

Acknowledgements

The authors would like to thank Dr. Steve Hilla and the anonymous reviewer for their suggestions and corrections which helped in improving the manuscript. JLA thanks Curtin Research Fellowship.

References

  1. Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics. Springer, Berlin, pp 1–333Google Scholar
  2. Awange JL, Grafarend EW (2002) Algebraic solution of Pseudo-ranging equations. GPS Solut 5(4):20–32CrossRefGoogle Scholar
  3. Bancroft S (1985) An algebraic solution of the GPS equations. IEEE Trans Aerosp Electron Syst AES-21:56–59CrossRefGoogle Scholar
  4. Bellomo N, Preziosi L, Romano A (2000) Mechanics and dynamical systems with Mathematica. Birkhäuser, Boston, pp 1–417Google Scholar
  5. Dixon AL (1908) The eliminant of three quantics in two independent variables. Proc London Math Soc 6:468–478CrossRefGoogle Scholar
  6. Freeman JA (1994) Simulating neural networks with Mathematica. Addison-Wesley, New York, pp 1–341Google Scholar
  7. Grafarend EW, Shan J (1996) Closed-form solution of the nonlinear pseudoranging equations (GPS). Artif Satellites Planet Geod 31:133–147Google Scholar
  8. Haneberg WC (2004) Computational geosciences with mathematics. Springer, BerlinGoogle Scholar
  9. Helton JW, Merino O (1998) Classical control using H-infty methods: an introduction to design. SIAM pp 1–171Google Scholar
  10. Kleusberg A (1994) Die direkte Lösung des räumlichen Hyperbelschnitts. Zeitschrift für Vermessungswesen 119:188–192Google Scholar
  11. Kleusberg A (2003) Analytical GPS navigation solution. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy—the challenge of the 3rd Millennium. Springer, Heidelberg, pp 93–96Google Scholar
  12. Lichtenegger H (1995) Eine direkte Lösung des räumlichen Bogenschnitts. Österreichische Zeitschrift für Vermessung und Geoinformation 83:224–226Google Scholar
  13. Romeny BM (2003) Front-end vision and multi-scale image analysis. Kluwer, Dordrecht, pp 1–464Google Scholar
  14. Singer P, Ströbel D, Hördt R, Bahndorf J, Linkwitz K (1993) Direkte Lösung des räumlichen Bogenschnitts. Zeitschrift für Vermessungswesen 124:295–297Google Scholar
  15. Stewart M, Penna NT, Lichti DD (2005) Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares. J Geod 79:479–489CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Béla Paláncz
    • 1
    Email author
  • Joseph L. Awange
    • 2
  • Erik W. Grafarend
    • 3
  1. 1.Department of Photogrammetry and GeoinformaticsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Western Australian Centre for Geodesy & The Institute for Geoscience ResearchCurtin University of TechnologyPerthAustralia
  3. 3.Department of Geodesy and GeoinformaticsStuttgart UniversityStuttgartGermany

Personalised recommendations