Advertisement

GPS Solutions

, Volume 11, Issue 1, pp 71–76 | Cite as

Finding the repeat times of the GPS constellation

  • Duncan Carr Agnew
  • Kristine M. Larson
GPS Tool Box

Abstract

Single-epoch estimates of position using GPS are improved by removing multipath signals, which repeat when the GPS constellation does. We present two programs for finding this repeat time, one using the orbital period and the other the topocentric positions of the satellites. Both methods show that the repeat time is variable across the constellation, at the few-second level for most satellites, but with a few showing much different values. The repeat time for topocentric positions, which we term the aspect repeat time, averages 247 s less than a day, with fluctuations through the day that may be as much as 2.5 s at high latitudes.

Keywords

Orbital Period Repeat Time Ground Track Multipath Signal Broadcast Ephemeris 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Penina Axelrad and George Rosborough for valuable discussions. This research was in part supported by the Southern California Earthquake Center, which is funded by NSF EAR-0106924 and USGS 02HQAG0008, and in part by NSF EAR-0337206. This is SCEC contribution 1012.

References

  1. Airy GB (1834) Gravitation: an elementary explanation of the principal perturbations in the solar system. C. Knight, LondonGoogle Scholar
  2. Beutler G, Weber R, Hugentobler U, Rothacher M, Verdun A (1998) GPS satellite orbits. In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy, 2nd edn. Springer, Berlin Heidelberg New York, pp. 43–109Google Scholar
  3. Bock Y, Nikolaidis RM, de Jonge PJ, Bevis M (2000) Instantaneous geodetic positioning at medium distances with the Global Positioning System. J Geophys Res 105:28223–28253CrossRefGoogle Scholar
  4. Bock Y, Prawirodirdjo L, Melbourne TI (2004) Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys Res Lett 31(6):L06604. DOI 10.1029/2003GL019150Google Scholar
  5. Choi K, Bilich A, Larson KM, Axelrad P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett 31(22):L22608. DOI 10.1029/2004GL021621Google Scholar
  6. Elósegui P, Davis JL, Jaldehag RTK, Johansson JM, Niell AE, Shapiro II (1995) Geodesy using the Global Positioning System: the effects of signal scattering on estimates of site position. J Geophys Res 100:9921–9934CrossRefGoogle Scholar
  7. Ge L, Han S, Rizos C (2002) GPS multipath change detection in permanent GPS stations. Surv Rev 36:306–322Google Scholar
  8. Genrich JF, Bock Y (1992) Rapid resolution of crustal motion at short ranges with the Global Positioning System. J Geophys Res 97:3261–3269CrossRefGoogle Scholar
  9. Genrich JF, Bock Y (2006) Instantaneous geodetic positioning with 10–50 Hz GPS measurements: noise characteristics and implications for monitoring networks. J Geophys Res 111(B3):B03403. DOI 10.1029/2005JB003617Google Scholar
  10. Hofmann-Wellenhof B, Lichtenegger H, Collins J (1994) Global Positioning System: theory and practice. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. Langbein J, Bock Y (2004) High-rate real-time GPS network at Parkfield: utility for detecting fault slip and seismic displacements. Geophys Res Lett 31(15):L15S20. DOI 10.1029/2003GL019408Google Scholar
  12. Larson KM, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300:1421–1424CrossRefGoogle Scholar
  13. Nikolaidis RM (2002) Observation of global and seismic deformation with the Global Positioning System. Ph.D. thesis, University of California, San DiegoGoogle Scholar
  14. Nikolaidis R, Bock Y, de Jonge PJ, Shearer P, Agnew DC, Domselaar MV (2001) Seismic wave observations with the Global Positioning System. J Geophys Res 106:21897–21916CrossRefGoogle Scholar
  15. Park K-D, Elósegui P, Davis JL, Jarlemark POJ, Corey BE, Niell AE, Normandeau JE, Meertens CE, Andreatta VA (2004a), Development of an antenna and multipath calibration system for Global Positioning System sites. Radio Sci 39(5):RS5002. DOI 10.1029/2003RS002999Google Scholar
  16. Park KD, Nerem RS, Schenewerk MS, Davis JL (2004b) Site-specific multipath characteristics of global IGS and CORS GPS sites. J Geod 77:799–803CrossRefGoogle Scholar
  17. Remondi BW (1989) Extending the National Geodetic Survey standard GPS orbit formats. NOAA Technical Report NOS 133 NGS 46. U.S. National Oceanic and Atmospheric Administration, RockvilleGoogle Scholar
  18. Schenewerk M (2003) A brief review of basic GPS orbit interpolation strategies. GPS Solut 6:265–267. DOI 10.1007/s10291-002-0036-0Google Scholar
  19. Seeber G, Menge F, Völksen C, Wübbena G, Schmitz M (1998) Precise GPS positioning improvements by reducing antenna and site dependent effects. In: Brunner FK (ed) Advances in positioning and reference frames: IAG symposium, vol. 118. Springer, Berlin Heidelberg New York, pp. 237–244,Google Scholar
  20. Wdowinski S, Bock Y, Zhang J, Fang P, et al (1997) Southern California permanent GPS geodetic array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J Geophys Res 102:18057–18070CrossRefGoogle Scholar
  21. Wübbena G, Schmitz M, Menge F, Seeber G, Völksen C (1997) A new approach for field calibration of absolute antenna phase center variations. Navigation 44:247–256Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Geophysics and Planetary Physics, Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Aerospace Engineering SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations