GPS Solutions

, Volume 9, Issue 2, pp 122–143 | Cite as

Analysis of atmospheric and ionospheric structures using the GPS/MET and CHAMP radio occultation database: a methodological review

  • Y. A. Liou
  • A. G. Pavelyev
  • J. Wickert
  • T. Schmidt
  • A. A. Pavelyev
Original Article


Since 1995, the global positioning system (GPS) has been exploited by the means of the radio occultation (RO) method to obtain the vertical profiles of refractivity, temperature, pressure, and water vapor in the neutral atmosphere and electron density in the ionosphere. Applying the RO method to the study of the Earth’s atmosphere was demonstrated for the first time with the GPS/MET experiment. Since then, several satellites with GPS receivers, suitable for RO experiments, have been launched including Oersted, SUNSAT, CHAMP, SAC-C, and GRACE. Future RO investigations that are planned now include FORMOSAT3/COSMIC and Terra-SAR missions. New elements in the RO technology are required to meet the goals of improving the accuracy and broadening the potential of the RO method. In this paper, a methodological review of RO investigations is presented to emphasize new directions in applying the RO method: measuring the vertical gradients of the refractivity in the atmosphere and electron density in the lower ionosphere, determination of the temperature regime in the upper stratosphere, investigation of the internal wave activity in the atmosphere, and study of the ionospheric disturbances on a global scale. These new directions may be relevant for investigating the relationships between processes in the atmosphere and mesosphere, the study of thermal regimes in the intermediate heights of the upper stratosphere—lower mesosphere, and the analysis of the influence of the space weather phenomena on the lower ionosphere.



We are grateful to UCAR and GFZ-Potsdam for the access of the GPS/MET and CHAMP RO data. The work has been partly supported by Russian Foundation for Basic Researches (RFBR), grant No. 03-02-17414, National Science Council of Taiwan grant NSC 93-2811-M008-010, and National Space Organization grant 92-NSPO(B)-RS3-FA07-03.


  1. Beyerle G, Hocke K (2001) Observation and simulation of direct and reflected GPS signals in radio occultation experiments. Geophys Res Lett 28:1895–1898Google Scholar
  2. Beyerle G, Hocke K, Wickert J, Schmidt T, Marquardt C, Reigber C (2002) GPS radio occultations with CHAMP: a radio holographic analysis of GPS signal propagation in the troposphere and surface reflections. J Geophys Res 107(D24), 27–1–27–14. doi:10.1029/2001JD001402Google Scholar
  3. Eckermann SD, Preusse P (1999) Global measurements of stratospheric mountain waves from space. Science 286:1534–1537CrossRefPubMedGoogle Scholar
  4. Eckermann SD, Hirota L, Hocking WA (1995) Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. QJR Meteorol Soc 121:149–186CrossRefGoogle Scholar
  5. Egorov YV (1985) Lectures on partial differential equations. Additional chapters. Moscow State University Press, Moscow (in Russian)Google Scholar
  6. Escudero A, Schlesier AC, Rius A, Flores A, Rubek F, Larsen GB, Syndergaard S, Hoeg P (2001) Ionospheric tomography using Orsted GPS measurements—preliminary results. Phys Chem Earth A 26(3):173–176CrossRefGoogle Scholar
  7. Fjeldbo G (1964) Bistatic radar methods for studying planetary ionospheres and surfaces, SU-64-025, 87, pp. Stanford Electronics Laboratories, Stanford, CaliforniaGoogle Scholar
  8. Fjeldbo G, Eshleman VR (1965) The bistatic radar-occultation method for the study of planetary atmospheres. J Geophys Res 70:3217–3225Google Scholar
  9. Fjeldbo G, Eshleman VR (1969) Atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment. Radio Sci 4:879–897Google Scholar
  10. Fjeldbo GF, Eshleman VR, Kliore AJ (1971) The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. Astron J 76:123–140CrossRefGoogle Scholar
  11. Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41:3-1–3-64CrossRefGoogle Scholar
  12. Gorbunov ME (2001) Radio holographic methods for processing radio occultation data in multipath regions. Scientific report 01–02. Danish Meteorological Institute, CopenhagenGoogle Scholar
  13. Gorbunov ME (2002) Canonical transform method for processing GPS radio occultation data in lower troposphere. Radio Sci 37(5) 9-1–9-10. doi: 10.1029/2000RS002592Google Scholar
  14. Gorbunov ME, Kornblueh L (2001) Analysis and validation of GPS/MET radio occultation data. J Geoph Res 106(D15): 17,161–17,169Google Scholar
  15. Gorbunov ME, Sokolovskiy SV (1993) Remote sensing of refractivity from space for global observations of atmospheric parameters. Max-Planck-Institute fuer Meteorologie Report No. 119. Hamburg, GermanyGoogle Scholar
  16. Gurvich AS, Krasil‘nikova TG (1990) Navigation satellites for radio sensing of the Earth’s atmosphere. Sov J Remote Sens 7:1124–1131Google Scholar
  17. Hajj GA, Ibanez-Meier R, Kursinski ER, Romans LJ (1994) Imaging the ionosphere with the global positioning system. Int J Imag Syst Technol 5:174–184Google Scholar
  18. Heise S, Jakowski N, Wehrenpfennig A, Reigber C, Luhr H (2002) Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: initial results. Geophys Res Lett 29(14), 10.1029/2002GL014738Google Scholar
  19. Hocke K (1997) Inversion of GPS meteorology data. Ann Geophys 15:443–450Google Scholar
  20. Hocke K, Pavelyev A, Yakovlev O, Barthes L, Jakowski N (1999) Radio occultation data analysis by radio holographic method. JASTP 61:1169–1177Google Scholar
  21. Igarashi K, Pavelyev A, Hocke K, Pavelyev D, Kucherjavenkov IA, Matugov S, Zakharov A, Yakovlev O (2000) Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from radio occultation data. Earth Planets Space 52:968–875Google Scholar
  22. Igarashi K, Pavelyev A, Hocke K, Pavelyev D, Wickert J (2001) Observation of wave structures in the upper atmosphere by means of radio holographic analysis of the radio occultation data. Adv Space Res 27(6–7):1321–1327CrossRefGoogle Scholar
  23. Jensen AS, Lohmann MS, Benzon HH, Nielsen AS (2003) Full Spectrum inversion of radio occultation signals, Radio Sci 38. 3. doi:10.1029/2002RS002763Google Scholar
  24. Kalashnikov I, Matugov S, Pavelyev A, Yakovlev O (1986) Analysis of the features of radio occultation method for the Earth’s atmosphere study. In: Nauka (ed) Electromagnetic waves in the atmosphere and space, Moscow, pp208–218. (in Russian)Google Scholar
  25. Karasawa Y, Yasukawa K, Yamada M (1985) Ionospheric scintillation measurement at 1.5 GHz in mid-latitude region. Radio Sci 20(3):643–651Google Scholar
  26. Kunitsyn VÅ, Andreeva ES, Tereshchenko ED, Khudukon BZ, Nygren T (1994) Investigations of the ionosphere by satellite radiotomography. Int J Imag Syst Technol 5:112–127Google Scholar
  27. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23,429–23,465Google Scholar
  28. Lindal GF (1992) The atmosphere of Neptune: an analysis of radio occultation data acquired with voyager. Astron J 103:967–982CrossRefGoogle Scholar
  29. Lindzen RS (1981) Turbulence and stress owing to GW and tidal breakdown. J Geophys Res 86(C-9):707–714Google Scholar
  30. Liou YA, Huang CY (2002) Active limb sounding of atmospheric refractivity and dry temperature profiles by GPS/Met occultation. In: Ling-Hsiao Lyu (ed) Space weather study using multipoint techniques. COSPAR Colloquia Series 12:60–69Google Scholar
  31. Liou YA, Pavelyev AG, Huang CY, Igarashi K, Hocke K (2002) Simultaneous observation of the vertical gradients of refractivity in the atmosphere and electron density in the lower ionosphere by radio occultation amplitude method. Geophys Res Lett 29(19): 43-1–43-4Google Scholar
  32. Liou YA, Pavelyev AG, Huang CY, Igarashi K, Hocke K, Yan SK (2003) Analytic method for observation of the gravity waves using radio occultation data. Geophys Res Let 30(20)ASC: 1-1–1-5Google Scholar
  33. Liou YA, Pavelyev AG, Wickert J, Huang CY, Yan SK, Liu SF (2004) Response of GPS occultation signals to atmospheric gravity waves and retrieval of gravity wave parameters. GPS Solution 8:103–111Google Scholar
  34. Marouf EA, Tyler GL (1982) Microwave edge diffraction by features in Saturn’s rings: observations with Voyager 1. Science 217:243–245Google Scholar
  35. Melbourne WG, Davis E, Duncan C, Hajj GA, Hardy K, Kursinski E, Meehan T, Young L (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, Publication 94–18, Jet Propulsion Laboratory, Pasadena, CaliforniaGoogle Scholar
  36. Mostert S, Koekemoer JA (1997) The science and engineering payloads and experiments on SUNSAT. Acta Astronaut 41(4–10):401–411CrossRefGoogle Scholar
  37. Pavelyev AG (1998) On the possibility of radio holographic investigation on communication link satellite-to-satellite. J Comm Techn Electron 43(8):126–131Google Scholar
  38. Pavelyev AG, Kucherjavenkov AI (1978) Refraction attenuation in the planetary atmospheres. Radio Eng Electron Phys 23(1–2):13–19Google Scholar
  39. Pavelyev A, Yeliseyev SD (1989) Study of the atmospheric layer near the ground using bistatic radar. J Comm Techn Electron 34(9):124–130Google Scholar
  40. Pavelyev AG (1990) Informational structure of image functions and possibility of detecting systematic errors in the solution of ill-posed problems. Sov Phys Dokl 35(3)Google Scholar
  41. Pavelyev A, Volkov AV, Zakharov AI, Krytikh SA, Kucherjavenkov AI (1996) Bistatic radar as a tool for earth investigation using small satellites. Acta Astron 39:721–730CrossRefGoogle Scholar
  42. Pavelyev A, Zakharov AI, Kucherjavenkov AI, Molotov EP, Sidorenko AI, Kucherjavenkova IL, Pavelyev DA (1997) Propagation of radio waves reflected from Earth’s Surface at grazing angles between a Low-Orbit Space Station and Geostationary Satellite. J Comm Techn Electron 42(1):45–50Google Scholar
  43. Pavelyev A, Igarashi K, Reigber C, Hocke K, Wickert J, Beyerle G, Matyugov S, Kucherjavenkov A, Pavelyev D, Yakovlev O (2002a) First application of radioholographic method to wave observations in the upper atmosphere. Radio Sci 37(3):15-1–15-11CrossRefGoogle Scholar
  44. Pavelyev AG, Liou YA, Huang CY, Reigber C, Wickert J, Igarashi K, Hocke K (2002b) Radio holographic method for the study of the ionosphere, atmosphere and terrestrial surface from space using GPS occultation signals. GPS Solution 6:101–108Google Scholar
  45. Pavelyev AG, Tsuda T, Igarashi K, Liou YA, Hocke K (2003) Wave structures in the electron density profile in the ionospheric D and E-layers observed by radio holography analysis of the GPS/MET radio occultation data. J Atmos Solar-Terr Phys 65(1):59–70CrossRefGoogle Scholar
  46. Pavelyev AG, Liou YA, Wickert J (2004) Diffractive vector and scalar integrals for bistatic radio holographic remote sensing. Radio Sci 39(4): RS4011, 1–16, doi:10.1029/2003RS002935Google Scholar
  47. Pfister L, Chan KR, Bui TP, Bowen S, Legg M, Gary B, Kelly K, Proffit M, Starr W (1993) GW generated by a tropical cyclone during the STEP tropical field program: a case study. J Geophys Res 98(D5): 8,611–8,638Google Scholar
  48. Rabiner L, Gold B (1978) Theory and application of digital signal processing. Prentice-Hall, Englewood CliffsGoogle Scholar
  49. Rocken C, Anthes R, Exner M, Hunt D, Sokolovskiy S, Ware R, Gorbunov M, Schreiner W, Feng D, Herman B, Kuo Y-H, Zou X (1997) Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res 102:29849–29866CrossRefGoogle Scholar
  50. Sokolovskiy SV, Hunt D (1996) Statistical optimization approach for GPS/MET data inversions. URSI GPS/MET Workshop, Tucson, AZGoogle Scholar
  51. Sokolovskiy SV (2000) Inversion of radio occultation amplitude data. Radio Sci 35(1):97–105CrossRefGoogle Scholar
  52. Sokolovskiy SV, Schreiner W, Rocken C, Hunt D (2002) Detection of high-altitude ionospheric irregularities with GPS/MET. Geophys Res Let 29(3):621–625Google Scholar
  53. Steiner AK, Kirchengast G (2000) GW spectra from GPS/MET occultation observations. J Atmos Ocean Tech 17:495–503CrossRefGoogle Scholar
  54. Steiner AK, Kirchengast G, Ladreiter HP (1999) Inversion, error analysis and validation of GPS/MET data. Ann Geophys 17:122–138Google Scholar
  55. Tsuda T, Hocke K (2002) Vertical wave number spectrum of temperature fluctuations in the stratosphere using GPS occultation data. J Meteorol Soc Japan 80(4B):1–13CrossRefGoogle Scholar
  56. Tsuda T, Nishida M, Rocken C, Ware RH (2000) A global morphology of GW activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J Geophys Res 105:7257–7273Google Scholar
  57. Tyler GL (1987) Radio propagation experiments in the outer solar system with Voyager. Proc IEEE 75:1404–1431Google Scholar
  58. Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Kuo Y, Meehan T, Melbourne W, Rocken C, Schreiner W, Sokolovskiy S, Solhelim F, Zou X, Anthes R, Businger S, Trenberth K (1996) GPS sounding of the atmosphere from low earth orbit: preliminary results. Bull Am Meteorol Soc 77(1):19–40CrossRefGoogle Scholar
  59. Wickert J, Reigber C, Beyerle G, Konig R, Marquardt C, Schmidt T, Grunwaldt L, Galas R, Meehan TK, Melbourne WG, Hocke K (2001) Atmosphere sounding by GPS radio occultation: first results from CHAMP. Geophys Res Lett 28(17):3263–3266Google Scholar
  60. Wickert J, Pavelyev AG, Liou YA, Schmidt T, Reigber Ch, Igarashi K, Pavelyev AA, Matyugov S (2004) Amplitude variations in GPS signals as a possible indicator of ionospheric structures. Geophys Res Lett 31(21), L24801, doi:10.1027/2004GL020607Google Scholar
  61. Yakovlev OI (ed) (2002) Space radio science. Taylor and Francis, London, p 320Google Scholar
  62. Yeh KC, Liu CH (1982) Radio wave scintillations in the ionosphere. Proc IEEE 70(4):324–360Google Scholar
  63. Yunck TP, Lindal GF, Liu CH (1988). The role of GPS in precise earth observation. Paper presented at the IEEE position, location and navigation symposium, Orlando, FL., November 29–December 2Google Scholar
  64. Zverev VA (1975) Radio-optics, Moscow. Soviet Radio EdGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Y. A. Liou
    • 1
  • A. G. Pavelyev
    • 2
  • J. Wickert
    • 3
  • T. Schmidt
    • 3
  • A. A. Pavelyev
    • 2
  1. 1.Center for Space and Remote Sensing ResearchNational Central UniversityChung-LiTaiwan
  2. 2. Institute of Radio Engineering and Electronics of Russian Academy of Sciences(IRE RAS), FryazinoMoscow regionRussia
  3. 3.GeoForschungsZentrum Potsdam (GFZ-Potsdam), TelegrafenbergPotsdamGermany

Personalised recommendations