GPS Solutions

, Volume 9, Issue 2, pp 96–104 | Cite as

Different mechanisms of the ionospheric influence on GPS occultation signals

  • A. G. Pavelyev
  • J. Wickert
  • Y. A. Liou
  • Ch. Reigber
  • T. Schmidt
  • K. Igarashi
  • A. A. Pavelyev
  • S. S. Matyugov
Original Article

Abstract

A local mechanism for strong ionospheric effects on radio occultation (RO) global positioning satellite system (GPS) signals is described. Peculiar zones centered at the critical points (the tangent points) in the ionosphere, where the gradient of the electron density is perpendicular to the RO ray trajectory, strongly influence the amplitude and phase of RO signals. It follows from the analytical model of local ionospheric effects that the positions of the critical points depend on the RO geometry and the structure of the ionospheric disturbances. Centers of strong ionospheric influence on RO signals can exist, for example, in the sporadic E-layers, which are inclined by 3–6° relative to the local horizontal direction. Also, intense F2 layer irregularities can contribute to the RO signal variations. A classification of the ionospheric influence on the GPS RO signals is introduced using the amplitude data, which indicates different mechanisms (local, diffraction, etc.) for radio waves propagation. The existence of regular mechanisms (e.g., local mechanism) indicates a potential for separating the regular and random parts in the ionospheric influence on the RO signals.

References

  1. Gorbunov ME (2002) Ionospheric correction and statistical optimization of radio occultation data. Radio Sci 37(5):17-1–17-9CrossRefGoogle Scholar
  2. Hajj GA, Romans LJ (1998) Ionospheric electron density profiles obtained with the global positioning system: results from GPS/MET experiment. Radio Sci 33(1):175–190CrossRefGoogle Scholar
  3. Igarashi K, Pavelyev A, Hocke K, Pavelyev D, Kucherjavenkov IA, Matugov S, Zakharov A, Yakovlev O (2000) Radio holographic principle for observing natural processes in the atmosphere and retrieving meteorological parameters from RO data. Earth Planets Space 52:868–875Google Scholar
  4. Igarashi K, Pavelyev A, Hocke K, Pavelyev D, Wickert J (2001) Observation of wave structures in the upper atmosphere by means of radio holographic analysis of the RO data. Adv Space Res 27:1321–1327CrossRefGoogle Scholar
  5. Liou YA, Pavelyev AG, Huang CY, Igarashi K, Hocke K (2002) Simultaneous observation of the vertical gradients of refractivity in the atmosphere and electron density in the lower ionosphere by radio occultation amplitude method. Geophys Res Lett 29(19):43-1–43-4Google Scholar
  6. Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy KA, Kursinski EA, Meehan TA, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication 94-18, 147 ppGoogle Scholar
  7. Pavelyev A (1998) On the possibility of radio holographic investigation on communication link satellite-to-satellite. J Commun Technol Electron 43(8):939–944Google Scholar
  8. Pavelyev A, Yeliseyev (1989) Study of the atmospheric layer near the ground using bistatic radar. J Commun Technol Electron 34(8):124–130Google Scholar
  9. Pavelyev A, Volkov AV, Zakharov AI, Krytikh SA, Kucherjavenkov AI (1996) Bistatic radar as a tool for earth investigation using small satellites. Acta Astronaut 39:721–730CrossRefGoogle Scholar
  10. Pavelyev AG, Liou YA, Huang CY, Reigber C, Wickert J, Igarashi K, Hocke K (2002) Radio holographic method for the study of the ionosphere, atmosphere and terrestrial surface using GPS occultation signals. GPS Solut 6:101–108CrossRefGoogle Scholar
  11. Pavelyev AG, Liou YA, Wickert J (2004) Diffractive vector and scalar integrals for bistatic radio-holographic remote sensing. Radio Sci 39(4), RS4011:1–16. DOI:10.1029/2003RS002935Google Scholar
  12. Steiner AK, Kirchengast G, Landreiter HP (1999) Inversion, error analysis, and validation of GPS/MET occultation data. Ann Geophys 17:122–138Google Scholar
  13. Vorob’ev VV, Gurvich AS, Kan V, Sokolovskiy SV, Fedorova OV, Shmakov AV (1999) Structure of the ionosphere from the radio-occultation GPS-“Microlab-1’ satellite data: preliminary results. Earth Observ Remote Sens 15:609–622Google Scholar
  14. Vorob’ev VV, Krasilnikova TG, Estimation of accuracy of the atmosphere refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system. Izvestiya Russian Academy of Sciences, Physics of the Atmosphere and Ocean. Engl Transl 29(7):602–609Google Scholar
  15. Wickert J et al (2001) Atmosphere sounding by GPS ratio occultation: first results from CHAMP. Geophys Res Lett 28:3263–3266Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. G. Pavelyev
    • 1
  • J. Wickert
    • 2
  • Y. A. Liou
    • 3
  • Ch. Reigber
    • 2
  • T. Schmidt
    • 2
  • K. Igarashi
    • 4
  • A. A. Pavelyev
    • 1
  • S. S. Matyugov
    • 1
  1. 1.Institute of Radio Engineering and Electronics of Russian Academy of Sciences (IRE RAS)Moscow regionRussia
  2. 2.GeoForschungsZentrum Potsdam (GFZ-Potsdam)PotsdamGermany
  3. 3.Center for Space and Remote Sensing ResearchNational Central UniversityChung-li Taiwan
  4. 4.National Institute of Information and Communications Technology (NICT)Incorporated Administrative Agency Japan 4-2-1Nukui Kitamchi, Koganei-Shi, TokyoJapan

Personalised recommendations