Advertisement

4OR

, Volume 17, Issue 4, pp 335–371 | Cite as

Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models

  • Fred GloverEmail author
  • Gary Kochenberger
  • Yu Du
Invited Survey

Abstract

Quantum Bridge Analytics relates generally to methods and systems for hybrid classical-quantum computing, and more particularly is devoted to developing tools for bridging classical and quantum computing to gain the benefits of their alliance in the present and enable enhanced practical application of quantum computing in the future. This is the first of a two-part tutorial that surveys key elements of Quantum Bridge Analytics and its applications, with an emphasis on supplementing models with numerical illustrations. In Part 1 (the present paper) we focus on the Quadratic Unconstrained Binary Optimization model which is presently the most widely applied optimization model in the quantum computing area, and which unifies a rich variety of combinatorial optimization problems.

Keywords

Quadratic Unconstrained Binary Optimization (QUBO) Quantum computing Quantum Bridge Analytics Combinatorial optimization 

Mathematics Subject Classification

90C27 81P68 11E16 

Notes

Acknowledgements

This tutorial was influenced by our collaborations on many papers over recent years with several colleagues to whom we owe a major debt of gratitude. These co-workers, listed in alphabetical order, are: Bahram Alidaee, Dick Barr, Andy Badgett, Rajesh Chawla, Yu Du, Jin-Kao Hao, Mark Lewis, Karen Lewis, Zhipeng Lu, Abraham Punnen, Cesar Rego, Yang Wang, Haibo Wang and Qinghua Wu. Other collaborators whose work has inspired us are too numerous to mention. Their names may be found listed as our coauthors on our home pages.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: ranking and clustering. J ACM (JACM) 55(5):23CrossRefGoogle Scholar
  2. Aimone JB, Hamilton KE, Mniszewsk S, Reeder L, Schuman CD, Severa WM (2018) Non-neural network applications for spiking neuromorphic hardware. In: PMES workshopGoogle Scholar
  3. Albash T, Lidar DA (2015) Decoherence in adiabatic quantum computation. Phys Rev A 91: 062320. arXiv:1503.08767v2
  4. Albash T, Hen I, Spedalieri FM, Lidar DA (2015) Reexamination of the evidence for entanglement in the D-Wave processor. Phys Rev A 92:62328. arXiv:1506.03539v2
  5. Aliadee B, Glover F, Kochenberger G, Rego C (2005) A new modeling and solution approach for the number partitioning problem. Appl Math Decis Sci 9(2):135–145Google Scholar
  6. Alidaee B, Kochenberger G, Lewis K, Lewis M, Wang H (2008) A new approach for modeling and solving set packing problems. Eur J Oper Res 186(2):504–512CrossRefGoogle Scholar
  7. Aloise D, Cafieri S, Caporossi G, Hansen P, Perron S, Liberti L (2010) Column generation algorithms for exact modularity maximization in networks. Phys Rev E 82(4):046112CrossRefGoogle Scholar
  8. Alom MZ, Van Essen B, Moody AT, Widemann DP, Taha TM (2017) Quadratic unconstrained binary optimization (QUBO) on neuromorphic computing system. In: IEEE 2017 international joint conference on neural networks (IJCNN).  https://doi.org/10.1109/ijcnn.2017.7966350
  9. Amin MHS, Truncik CJS, Averin DV (2008) Role of single qubit decoherence time in adiabatic quantum computation. Phys Rev A 80: 022303. arXiv:0803.1196v2
  10. Anthony M, Boros E, Crama Y, Gruber A (2017) Quadratic reformulations of nonlinear binary optimization problems. Math Program 162(1–2):115–144CrossRefGoogle Scholar
  11. Aramon M, Rosenberger G, Valiante E, Miyazawa T, Tamura H, Katzgraber HG (2019) Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front Phys 7:48CrossRefGoogle Scholar
  12. Berwald JJ, Gottlieb JM, Munch E (2018) Computing Wasserstein distance for persistence diagrams on a quantum computer. arXiv:1809.06433
  13. Boixo S, Rønnow TF, Isakov SV, Wang Z, Wecker D, Lidar DA, Martinis JM, Troyer M (2014) Evidence for quantum annealing with more than one hundred qubits. Nat Phys 10:218–224CrossRefGoogle Scholar
  14. Boros E, Hammer P (1991) The max-cut problem and quadratic 0–1 optimization: polyhedral aspects, relaxations and bounds. Ann Oper Res 33(3):151–180CrossRefGoogle Scholar
  15. Boros E, Hammer P (2002) Pseudo-boolean optimization. Discrete Appl Math 123(1):155–225CrossRefGoogle Scholar
  16. Boros E, Hammer PL, Sun R, Tavares G (2008) A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (QUBO). Discrete Optim 5(2):501–529CrossRefGoogle Scholar
  17. Chapuis G, Djidjev H, Hahn G, Rizk G (2018) Finding maximum cliques on the D-wave quantum annealer. J Signal Process Syst.  https://doi.org/10.1007/s11265-018-1357-8 CrossRefGoogle Scholar
  18. Clark J, West T, Zammit J, Guo X, Mason L, Russell D (2019) Towards real time multi-robot routing using quantum computing technologies. In: HPC Asia 2019 proceedings of the international conference on high performance computing in Asia-Pacific region, pp 111–119Google Scholar
  19. Date P, Patton R, Schuman C, Potok T (2019) Efficiently embedding QUBO problems on adiabatic quantum computers. Quantum Inf Process 18:117.  https://doi.org/10.1007/s11128-019-2236-3 CrossRefGoogle Scholar
  20. Debenedictis EP (2019) A future with quantum machine learning. IEEE Comput Edge 5(3):24–27Google Scholar
  21. Elsokkary N, Khan FS, Humble TS, Torre DL, Gottlieb J (2017) Financial portfolio management using D-wave, quantum optimizer: the case of abu dhabi securities exchange. In: 2017 IEEE high-performance extreme computing (HPEC)Google Scholar
  22. Farhi E, Goldstone J (2014) A quantum approximate optimization algorithm. arXiv:1411.4028
  23. Feld S, Roch C, Gabor T, Seidel C, Neukart F, Galter I, Mauerer W, Linnhoff-Popien C (2018) A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer. arXiv:1811.07403
  24. Glover F (1996) Tabu search and adaptive memory programming–advances, applications and challenges. In: Barr RS, Helgason RV, Kennington JL (eds) Interfaces in computer science and operations research. Kluwer Academic Publishers, Springer, pp 1–75Google Scholar
  25. Glover F (1997) A template for scatter search and path relinking, in artificial evolution. In: Hao JK, Lutton E, Ronald E, Schoenauer M, Snyers D (eds) Lecture notes in computer science, vol 1363. Springer, pp 13–54Google Scholar
  26. Glover F, Kochenberger G (2019) Quantum bridge analytics & QUBO 2.0. In: Quantum insight conference 2019, invited presentation 10/04/19, LHOFT—Luxembourg House of Financial Technology, 9, rue du Laboratoire, LuxembourgGoogle Scholar
  27. Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  28. Glover F, Mulvey J, Bai D, Tapia M (1998) Integrative population analysis for better solutions to large-scale mathematical programs. In: Yu G (ed) Industrial applications of combinatorial optimization. Kluwer Academic Publishers, Boston, pp 212–237CrossRefGoogle Scholar
  29. Glover F, Kochenberger G, Alidaee B, Amini M (2002) Solving quadratic knapsack problems by reformulation and tabu search. In: Pardalos PM, Megados A, Burkard R (eds) Combinatorial and global optimization. World Scientific Publishing Co., Singapore, pp 272–287Google Scholar
  30. Glover F, Kochenberger G, Wang Y (2018a) A new QUBO model for unsupervised machine learning. Res Prog (work in progress) Google Scholar
  31. Glover F, Lewis M, Kochenberger G (2018b) Logical and inequality implications for reducing the size and difficulty of unconstrained binary optimization problems. Eur J Oper Res 265(2018):829–842CrossRefGoogle Scholar
  32. Hahn G, Djidjev H (2017) Reducing binary quadratic forms for more scalable quantum annealing. In: 2017 IEEE international conference on rebooting computing.  https://doi.org/10.1109/ICRC.2017.8123654
  33. Hamilton K, Schuman CD, Young SR, Imam N, Humble TS (2018) Neural networks and graph alogrithms with next-generation processors. In: 2018 IEEE international parallel and distributed processing symposium workshops (IPDPSW).  https://doi.org/10.1109/IPDPSW.2018.00184
  34. Hoos HH (2012) Programming by optimization. Commun ACM 55(2):70–80CrossRefGoogle Scholar
  35. Kalra A, Qureshi F, Tisi M (2018) Portfolio asset identification using graph algorithms on a quantum annealer. http://www.henryyuen.net/fall2018/projects/qfinance.pdf
  36. Kerberos (2019) The network authentication protocol. https://web.mit.edu/kerberos/
  37. Kochenberger G, Glover F (2006) A unified framework for modeling and solving combinatorial optimization problems: a tutorial. In: Hager W, Huang SJ, Pardalos P, Prokopyev O (eds) Multiscale optimization methods and applications. Springer, Berlin, pp 101–124CrossRefGoogle Scholar
  38. Kochenberger G, Glover F, Alidaee B, Lewis K (2005a) Using the unconstrained quadratic program to model and solve Max 2-Sat problems. Int J OR 1(1):89–100Google Scholar
  39. Kochenberger G, Glover F, Alidaee B, Rego C (2005b) An unconstrained quadratic binary programming approach to the vertex coloring problem. Ann OR 139(1–4):229–241CrossRefGoogle Scholar
  40. Kochenberger G, Hao J-K, Lu S, Wang H, Glover F (2013) Solving large scale max cut problems via tabu search. J Heuristics 19(4):565–571CrossRefGoogle Scholar
  41. Kochenberger G, Hao J-K, Glover F, Lewis M, Lu Z, Wang H, Wang Y (2014) The unconstrained binary quadratic programming problem: a survey. J Comb Optim 28(1):58–81CrossRefGoogle Scholar
  42. Kochenberger G, Badgett A, Chawla R, Glover F, Wang Y, Du Y (2019) Comparison of QAOA and alpha QUBO algorithms (work in progress) Google Scholar
  43. Lanting AJ, Przybysz A, Smirnov Y, Spedalieri FM, Amin MH, Berkley AJ, Harris R, Altomare F, Boixo S, Bunyk P, Dickson N, Enderud C, Hilton JP, Hoskinson E, Johnson MW, Ladizinsky E, Ladizinsky N, Neufeld R, Oh T, Perminov I, Rich C, Thom MC, Tolkacheva E, Uchaikin S, Wilson AB, Rose G (2014) Entanglement in a quantum annealing processor. Phys Rev X 4:021041. arXiv:1401.3500v1
  44. Lewis M (2008) A new modeling and solution approach for the set partitioning problem. Comput OR 35(3):807–813CrossRefGoogle Scholar
  45. Lucas A (2014) Ising formulations of many NP problems. Front Phys 5:2. arXiv:1302.5843
  46. Mniszewski S, Negre C, Ushijima-Mwesigwa H (2016) Graph partitioning using the D-wave for electronic structure problems. LA-UR-16-27873, pp 1–21Google Scholar
  47. Mniszewski SM, Negre CFA, Ushijima-Mwesigwa (2018) Graph clustering approaches using near term quantum computing. In: Argonne quantum computing workshopGoogle Scholar
  48. Negre CFA, Ushijima-Mwesigwa H, Mniszewsk SM (2019) Detecting multiple communities using quantum annealing on the D-wave system. arXiv:1901.09756
  49. Neukart F, Compostella G, Seidel C, Dollen D, Yarkoni S, Parney B (2017) Traffic flow optimization using a quantum annealer. arXiv:1708.01625
  50. Ohzeki M, Miki A, Miyama MJ, Terabe M (2018) Control of automated guided vehicles without collision by quantum annealer and digital devices. arXiv:1812.01532
  51. Oliveira NMD, Silva RMDA, Oliveira WRD (2018) QUBO formulation for the contact map overlap problem. Int J Quantum Inf 16(8):1840007CrossRefGoogle Scholar
  52. O’Malley D, Vesselinov VV, Alexandrov BS, Alexandrov LB (2018) Nonnegative/binary matrix factorization with a D-Wave quantum annealer. PLoS ONE 13(12):e0206653.  https://doi.org/10.1371/journal.pone.0206653 CrossRefGoogle Scholar
  53. Pakin S (2017) Navigating a maze using a quantum annealer. In: Proceedings of the second international workshop on post Moores era supercomputing, pp 30–36Google Scholar
  54. Pakin S (2018) QMASM–quantum macro assembler. https://ccsweb.lanl.gov/~pakin/software/; https://github.com/lanl/qmasm
  55. Pardalos P, Xue J (1999) The maximum clique problem. J Glob Optim 4(3):301–328CrossRefGoogle Scholar
  56. Pelofske E, Hahn G, Djidjev H (2019) Solving large Maximum Clique problems on a quantum annealer. arXiv:1901.07657 CrossRefGoogle Scholar
  57. Preskill J (2019) Why i called it “quantum supremacy, quanta magazine. https://www.quantamagazine.org/john-preskill-explains-quantum-supremacy-20191002/
  58. Pudenz KL, Lidar DA (2013) Quantum adiabatic machine learning. Quantum Inf Process 12(5):2027–2070CrossRefGoogle Scholar
  59. Qbsolv (2017) D-Wave initiates open quantum software environment. www.dwavesys.com/press-releases/d-wave-initiates-open-quantum-software-environment
  60. Reedy C (2017) When will quantum computers be consumer products? Futurism. https://futurism.com/when-will-quantum-computers-be-consumer-products
  61. Reinhardt S (2018) Detecting lateral movement with a compute-intense graph kernel. http://www.clsac.org/uploads/5/0/6/3/50633811/reinhardt-clsac-2018.pdf
  62. Rodriguez-Heck E (2018) Linear ad quadratic reformulations of nonlinear optimization problems in binary variables. Ph.D. Dissertation, Liege UniversityGoogle Scholar
  63. Rosenberg I (1975) Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d’Etudes de Recherche Operationnelle 17:71–74Google Scholar
  64. Sahner D (2018) A potential role for quantum annealing in the enhancement of patient outcomes?. https://www.dwavesys.com/sites/default/files/Sahner.2018.pdf
  65. Samorani M, Wang Y, Wang Y, Lv Z, Glover F (2019) Clustering-Driven evolutionary algorithms: an application of path relinking to the quadratic unconstrained binary optimization problem. J Heuristics 25(4–5):629–642CrossRefGoogle Scholar
  66. Schneidman E, Berry MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087):1007–1012CrossRefGoogle Scholar
  67. Shaydulin R, Ushijima-Mwesigwa H, Safro I, Mniszewski S, Alexeev Y (2018) Community detection across emerging quantum architectures. In: PMES workshopGoogle Scholar
  68. The National Academies of Sciences, Engineering and Medicine Consensus Study Report (2019) Quantum computing: progress and prospects. https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects
  69. Ushijima-Mwesigwa H, Negre CFA, Mniszewsk SM (2017) Graph partitioning using quantum annealing on the D-wave system. arXiv:1705.03082
  70. Verma A, Lewis M (2019) Optimal quadratic reformulations of fourth degree Pseudo-Boolean functions. Optim Lett.  https://doi.org/10.1007/s11590-019-01460-7 CrossRefGoogle Scholar
  71. Vyskocil T, Pakin S, Djidjev HN (2019) Embedding inequality constraints for quantum annealling optimization, quantum technology and optimization problems. QTOP 2019. Lecture notes in computer science, vol 11413. SpringerGoogle Scholar
  72. Wang Q, Abdullah T (2018) An introduction to quantum optimization approximation algorithm. https://www.cs.umd.edu/class/fall2018/cmsc657/projects/group_16.pdf
  73. Wang Y, Lu Z, Glover F, Hao J-K (2012) Path relinking for unconstrained binary quadratic programming. Eur J Oper Res 223(3):595–604CrossRefGoogle Scholar
  74. Wang Y, Lu Z, Glover F, Hao J-K (2013) Backbone guided tabu search for solving the UBQP problem. J Heuristics 19(4):679–695CrossRefGoogle Scholar
  75. Wang H, Wang Y, Resende M, Kochenberger G (2016) A QUBO approach to solving QAP problems (unpublished manuscript)Google Scholar
  76. Yu H, Huang Y, Wu B (2018) Exact equivalence between quantum adiabatic algorithm and quantum circuit algorithm. arXiv: 1706.07646v3 [quant-ph],  https://doi.org/10.1088/0256-307X/35/11/110303 CrossRefGoogle Scholar
  77. Zhou L, Wang S, Choi S, Pichler H, Lukin MD (2018) Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. arXiv:1812.01041

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ECEE, College of Engineering and Applied ScienceUniversity of ColoradoBoulderUSA
  2. 2.Business SchoolUniversity of Colorado at DenverDenverUSA

Personalised recommendations