4OR

, Volume 11, Issue 3, pp 275–294 | Cite as

Bicriteria path problem minimizing the cost and minimizing the number of labels

  • Marta Pascoal
  • M. Eugénia Captivo
  • João Clímaco
  • Ana Laranjeira
Research paper

Abstract

We address a bicriterion path problem where each arc is assigned with a cost value and a label (such as a color). The first criterion intends to minimize the total cost of the path (the summation of its arc costs), while the second intends to get the solution with a minimal number of different labels. Since these criteria, in general, are conflicting criteria we develop an algorithm to generate the set of non-dominated paths. Computational experiments are presented and results are discussed.

Keywords

Minimal cost Minimal number of labels Bicriteria Shortest path 

Mathematics Subject Classification (2000)

05C85 90C27 90C29 

Notes

Acknowledgments

This work was partially supported by the FCT Portuguese Foundation of Science and Technology (Fundação para a Ciência e a Tecnologia) under projects PEst-C/EEI/UI0308/2011, PEst-OE/MAT/UI0152 and PTDC/EEA-TEL/101884/2008. The authors deeply acknowledge the INESC-Coimbra research group on urban transportation, led by João Coutinho Rodrigues, for providing data about the metropolitan area of Coimbra.

References

  1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms and applications. Prentice Hall, Englewood CliffsGoogle Scholar
  2. Bornstein C, Maculan N, Pascoal M, Pinto L (2012) Multiobjective combinatorial optimization problems with a cost and several bottleneck objective functions: an algorithm with reoptimization. Comput Oper Res 39:1969–1976CrossRefGoogle Scholar
  3. Chang R, Leu S-J (1997) The minimum labeling spanning trees. Inf Process Lett 63(5):277–282CrossRefGoogle Scholar
  4. Clímaco J, Martins E (1982) A bicriterion shortest path algorithm. Eur J Oper Res 11:399–404CrossRefGoogle Scholar
  5. Clímaco J, Pascoal M (2012) Multicriteria path and tree problems: discussion on exact algorithms and applications. Int Trans Oper Res 19:63–98CrossRefGoogle Scholar
  6. Clímaco J, Captivo ME, Pascoal M (2010) On the bicriterion-minimal cost/minimal label-spanning tree problem. Eur J Oper Res 204:199–205CrossRefGoogle Scholar
  7. Consoli S, Moreno JA, Mladenović N, Darby-Dowman K (2006) Constructive heuristics for the minimum labelling spanning tree problem: a preliminary comparison. Technical Report DEIOC-4, Universidad de La Laguna, La Laguna, September http://hdl.handle.net/2438/504
  8. Hansen P (1980) Bicriterion path problems. In: Fandel G, Gal T (eds) Multiple criteria decision making: theory and applications. Lectures notes in economics and mathematical systemsGoogle Scholar
  9. Iori M, Martello S, Pretolani D (2010) An aggregate label setting policy for the multi-objective shortest path problem. Eur J Oper Res 207:1489–1496CrossRefGoogle Scholar
  10. Kruskal J (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7:48–50CrossRefGoogle Scholar
  11. Prim R (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36:1389–1401CrossRefGoogle Scholar
  12. Raith A, Ehrgott M (2009) A comparison of solution strategies for biobjective shortest path problems. Comput Oper Res 36:1299–1331CrossRefGoogle Scholar
  13. Steuer R (1986) Multiple criteria optimization theory, computation and application. Wiley, New YorkGoogle Scholar
  14. Van-Nes R (2002) Design of multimodal transport networks: a hierarchical approach. Delft University Press, DelftGoogle Scholar
  15. Vincke P (1974) Problèmes multicritères. Cahiers du Centre d’Études de Recherche Opérationelle 16:425–439Google Scholar
  16. Wirth H-C (2001) Multicriteria approximation of network design and network upgrade problems. PhD thesis, University of WürzburgGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marta Pascoal
    • 1
    • 2
  • M. Eugénia Captivo
    • 3
  • João Clímaco
    • 2
    • 4
  • Ana Laranjeira
    • 1
  1. 1.Departamento de Matemática da FCTUCCoimbraPortugal
  2. 2.Instituto de Engenharia de Sistemas e Computadores—CoimbraCoimbraPortugal
  3. 3.Centro de Investigação Operacional, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  4. 4.Faculdade de EconomiaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations