Advertisement

4OR

, Volume 11, Issue 1, pp 1–30 | Cite as

Bilevel programming and price setting problems

  • Martine LabbéEmail author
  • Alessia Violin
Invited Survey

Abstract

This paper is devoted to pricing optimization problems which can be modeled as bilevel programs. We present the main concepts, models and solution methods for this class of optimization problems.

Keywords

Bilevel programming Pricing Networks Combinatorial optimization Stackelberg game 

MSC classification

90-01 90B06 90B10 90C11 90C35 90C57 90C90 91A65 91A80 

Notes

Acknowledgments

The first author acknowledges support from the “Ministerio de Ciencia e Innovacíon” through the research project MTM2009-14039-C06. The second author acknowledges support from the Belgian national scientific funding agency “Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture” (FRIA), of which she is a research fellow.

References

  1. Amaldi E, Bruglieri M, Fortz B (2011) On the hazmat transport network design problem. In: Pahl J, Reiners T, Voß S (eds) Network optimization, lecture notes in computer science, vol 6701. Springer, Berlin, pp 327–338Google Scholar
  2. Bouhtou M, Van Hoesel S, Van der Kraaij A, Lutton J (2007a) Tariff optimization in networks. INFORMS J Comput 19(3):458–469Google Scholar
  3. Bouhtou M, Grigoriev A, Van Hoesel S, Van der Kraaij A, Spieksma F, Uetz M (2007b) Pricing bridges to cross a river. Naval Res Logist 54:411–420Google Scholar
  4. Bracken J, McGill J (1973) Mathematical programs with optimization problems in the constraints. Oper Res 21(1):37–44CrossRefGoogle Scholar
  5. Brotcorne L, Labbé M, Marcotte P, Savard G (2000) A bilevel model and solution algorithm for a freight tariff-setting problem. Transp Sci 34(3):289–302CrossRefGoogle Scholar
  6. Brotcorne L, Labbé M, Marcotte P, Savard G (2001) A bilevel model for toll optimization on a multicommodity transportation network. Transp Sci 35(4):345–358CrossRefGoogle Scholar
  7. Brotcorne L, Labbé M, Marcotte P, Savard G (2008) Joint design and pricing on a network. Oper Res 56(5):1104–1115CrossRefGoogle Scholar
  8. Candler W, Norton R (1977) Multilevel programming. Technical report 20, World Bank Development Research Center, Washington, DCGoogle Scholar
  9. Cardinal J, Demaine E, Fiorini S, Joret G, Langerman S, Newman I, Weimann O (2011) The stackelberg minimum spanning tree game. Algorithmica 59:129–144CrossRefGoogle Scholar
  10. Castelli L, Labbé M, Violin A (2012) A network pricing formulation for the revenue maximization of european air navigation service providers. Transp Res Part C. doi: 10.1016/j.trc.2012.04.013
  11. Colson B, Marcotte P, Savard G (2005) Bilevel programming: a survey. 4OR. Q J Oper Res 3:87–105CrossRefGoogle Scholar
  12. Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Ann Oper Res 153:235–256CrossRefGoogle Scholar
  13. Dempe S (2002) Foundations of bilevel programming, nonconvex optimization and its applications, vol 61. Kluwer, DordrechtGoogle Scholar
  14. Dewez S (2004) On the toll setting problem. PhD thesis, Université Libre de Bruxelles, BrusslesGoogle Scholar
  15. Dewez S, Labbé M, Marcotte P, Savard G (2008) New formulations and valid inequalities for a bilevel pricing problem. Oper Res Lett 36(2):141–149CrossRefGoogle Scholar
  16. Garey M, Johnson D (1979) Computers and interactability. W.H. Freeman, San FranciscoGoogle Scholar
  17. Hansen P, Jaumard B, Savard G (1992) A new branch-and-bound rules for linear bilevel programming. SIAM J Sci Stat Comput 5(13):1194–1217Google Scholar
  18. Heilporn G, Labbé M, Marcotte P, Savard G (2010a) A parallel between two classes of pricing problems in transportation and marketing. J Rev Pricing Manage 9(1/2):110–125CrossRefGoogle Scholar
  19. Heilporn G, Labbé M, Marcotte P, Savard G (2010b) A polyhedral study of the network pricing problem with connected toll arcs. Networks 3(55):234–246Google Scholar
  20. Heilporn G, Labbé M, Marcotte P, Savard G (2011) Valid inequalities and branch-and-cut for the clique pricing problem. Discret Optimiz 8(3):393–410CrossRefGoogle Scholar
  21. Jeroslow R (1985) The polynomial hierarchy and a simple model for competitive analysis. Math Program 32:146–164CrossRefGoogle Scholar
  22. Joret G (2011) Stackelberg network pricing is hard to approximate. Networks 57(2):117–120Google Scholar
  23. Labbé M, Marcotte P, Savard G (1998) A bilevel model of taxation and its application to optimal highway pricing. Manage Sci 44(12):1608–1622CrossRefGoogle Scholar
  24. Loridan P, Morgan J (1996) Weak via strong stackelberg problem: new results. J Glob Optimiz 8:263–287CrossRefGoogle Scholar
  25. Migdalas A (1995) Bilevel programming in traffic planning: models, methods and challenge. J Glob Optimiz 7:381–405CrossRefGoogle Scholar
  26. Owen G (1968) Game theory. Emerald Group, BingleyGoogle Scholar
  27. Roch S, Marcotte P, Savard G (2005) Design and analysis of an approximation algorithm for stackelberg network pricing. Networks 46(1):57–67CrossRefGoogle Scholar
  28. Shioda R, Tunçel L, Myklebust T (2011) Maximum utility product pricing models and algorithms based on reservation price. Comput Optimiz Appl 48:157–198CrossRefGoogle Scholar
  29. Stackelberg H (1952) The theory of market economy. Oxford University Press, OxfordGoogle Scholar
  30. Van Ackere A (1993) The principal/agent paradigm: its relevance to various functional fields. Eur J Oper Res 70(1):83–103CrossRefGoogle Scholar
  31. Van Hoesel S (2008) An overview of stackelberg pricing in networks. Eur J Oper Res 189:1393–1402CrossRefGoogle Scholar
  32. Vicente L, Calamai P (1994) Bilevel and multilevel programming: a bibliography review. J Glob Optimiz 5:291–306CrossRefGoogle Scholar
  33. Vicente L, Savard G, Júdice J (1994) Descent approaches for quadratic bilevel programming. J Optimiz Theory Appl 81(2):379–399CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Départment d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations