Advertisement

4OR

, 9:299 | Cite as

LocalSolver 1.x: a black-box local-search solver for 0-1 programming

  • Thierry Benoist
  • Bertrand Estellon
  • Frédéric Gardi
  • Romain Megel
  • Karim Nouioua
Industry

Abstract

This paper introduces LocalSolver 1.x, a black-box local-search solver for general 0-1 programming. This software allows OR practitioners to focus on the modeling of the problem using a simple formalism, and then to defer its actual resolution to a solver based on efficient and reliable local-search techniques. Started in 2007, the goal of the LocalSolver project is to offer a model-and-run approach to combinatorial optimization problems which are out of reach of existing black-box tree-search solvers (integer or constraint programming). Having outlined the modeling formalism and the main technical features behind LocalSolver, its effectiveness is demonstrated through an extensive computational study. The version 1.1 of LocalSolver can be freely downloaded at http://www.localsolver.com and used for educational, research, or commercial purposes.

Keywords

Combinatorial optimization 0-1 programming Local search Black-box solver OR software 

MSC Classification (2000)

90C27 90C10 90C90 90B90 

References

  1. Aarts E, Lenstra J (1997) Local search in combinatorial optimization. In: Aarts E, Lenstra J (eds) Local search in combinatorial optimization, wiley-interscience series in discrete mathematics and optimization. Wiley, ChichesterGoogle Scholar
  2. Benoist T, Bourreau E (2008) Fast global filtering for eternity II. Constraint Program Lett 3: 35–50Google Scholar
  3. Benoist T, Estellon B, Gardi F, Jeanjean A (2009a) High-performance local search for solving inventory routing problems. In: Stützle T, Birattari M, Hoos H (eds) Proceedings of SLS 2009, the 2nd international workshop on engineering stochastic local search algorithms, Springer, Lecture Notes in Computer Science, vol 5752, pp 105–109Google Scholar
  4. Benoist T, Jeanjean A, Molin P (2009b) Minimum formwork stock problem on residential buildings construction sites. 4OR-Q J Oper Res 7: 275–288CrossRefGoogle Scholar
  5. Cahon S, Melab N, Talbi EG (2004) ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics. J Heuristics 10(3): 357–380CrossRefGoogle Scholar
  6. Caseau Y, Laburthe F, Silverstein G (1999) A meta-heuristic factory for vehicle routing problems. In: Proceedings of CP 1999, Springer, Lecture Notes in Computer Science, vol 1713, pp 144–158Google Scholar
  7. Comet Tutorial (2010) Comet 2.1 Tutorial. Dynadec Decision Technologies Inc., Providence, RI, 581 pages, http://www.dynadec.com
  8. Di Gaspero L, Schaerf A (2003) EasyLocal++: an object-oriented framework for flexible design of local search algorithms. Softw Pract Exp 33(8): 733–765CrossRefGoogle Scholar
  9. Dotú I, Van Hentenryck P (1999) Scheduling social golfers locally. In: Proceedings of CPAIOR 2005, Springer, Lecture Notes in Computer Science, vol 3524, pp 155–167Google Scholar
  10. Estellon B, Gardi F, Nouioua K (2006) Large neighborhood improvements for solving car sequencing problems. RAIRO Oper Res 40(4): 355–379CrossRefGoogle Scholar
  11. Estellon B, Gardi F, Nouioua K (2008) Two local search approaches for solving real-life car sequencing problems. Eur J Oper Res 191(3): 928–944CrossRefGoogle Scholar
  12. Estellon B, Gardi F, Nouioua K (2009) High-performance local search for task scheduling with human resource allocation. In: Proceedings of SLS 2009, Springer, Lecture Notes in Computer Science, vol 5752, pp 1–15Google Scholar
  13. Hnich B, Miguel I, Gent I, Walsh T (2009) CSPLib: a problem library for constraints. http://www.csplib.org
  14. Michel L, Van Hentenryck P (2000) Localizer. Constraints 5(1/2): 43–84CrossRefGoogle Scholar
  15. Perron L, Shaw P (2004) Combining forces to solve the car sequencing problem. In: Proceedings of CPAIOR 2004, Springer, Lecture Notes in Computer Science, vol 3011, pp 225–239Google Scholar
  16. Perron L, Shaw P, Furnon V (2004) Propagation guided large neighborhood search. In: Proceedings of CP 2004, Springer, Lecture Notes in Computer Science, vol 3258, pp 468–481Google Scholar
  17. Prandtstetter M, Raidl G (2008) An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem. Eur J Oper Res 191(3): 1004–1022CrossRefGoogle Scholar
  18. Rego C, Glover F (2002) Local search and metaheuristics. In: Gutin G, Punnen A (eds) The traveling salesman problem and its variations. Kluwer Academic Publishers, Dordrecht, pp 105–109Google Scholar
  19. Schaus P, Deville Y (2008) Hybridation de la programmation par contraintes et d’un voisinage à très grande taille pour Eternity II. In: Proceedings of JFPC 2008, pp 115–122Google Scholar
  20. Schaus P, Hentenryck PV, Monette JN, Coffrin C, Michel L, Deville Y (2011) Solving steel mill slab problems with constraint-based techniques: CP, LNS, CBLS, to appear in ConstraintsGoogle Scholar
  21. Selman B, Kautz H, Cohen B (1996) Local search strategies for satisfiability testing. In: Johnson D, Trick M (eds) Cliques, coloring, and satisfiability: 2nd DIMACS implementation challenge, DIMACS series in discrete mathematics and theoretical computer science, vol 26. AMS, ProvidenceGoogle Scholar
  22. Van Hentenryck P, Michel L (2005) Constraint-based local search. The MIT Press, BostonGoogle Scholar
  23. Van Hentenryck P, Michel L (2007) Synthesis of constraint-based local search algorithms from high-level models. In: Proceedings of AAAI 2007, pp 273–279Google Scholar
  24. Van Hentenryck P, Michel L (2008) The steel mill slab design problem revisited. In: Proceedings of CPAIOR 2008, Lecture Notes in Computer Science, vol 5015, pp 377–381Google Scholar
  25. Vasquez M, Hao JK (2001) A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite. Comput Optim Appl 20(2): 137–157CrossRefGoogle Scholar
  26. Voudouris C, Dorne R, Lesaint D, Liret A (2001) iOpt: a software toolkit for heuristic search methods. In: Proceedings of CP 2001, Lecture Notes in Computer Science, vol 2239, pp 716–730Google Scholar
  27. Walser J, Iyer R, Venkatasubramanyan N (1998) An integer local search method with application to capacitated production planning. In: Proceedings of AAAI 1998, pp 373–379Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thierry Benoist
    • 1
  • Bertrand Estellon
    • 2
  • Frédéric Gardi
    • 1
  • Romain Megel
    • 1
  • Karim Nouioua
    • 2
  1. 1.Bouygues e-labParisFrance
  2. 2.Laboratoire d’Informatique Fondamentale, CNRS UMR 6166Université Aix-Marseille II, Faculté des Sciences de LuminyMarseilleFrance

Personalised recommendations