4OR

, Volume 8, Issue 4, pp 407–424 | Cite as

A tutorial on column generation and branch-and-price for vehicle routing problems

Education Paper

Abstract

This paper provides a tutorial on column generation and branch-and-price for vehicle routing problems. The main principles and the basic theory of the methods are first outlined. Some additional issues, including reinforcement of the relaxation or stabilization, complete the paper. For the sake of simplicity, this material is illustrated with the case of the vehicle routing problem with time windows.

Keywords

Column generation Branch-and-price Vehicle routing problem 

MSC classification (2000)

9001 90B06 90C06 

References

  1. Baldacci R, Toth P, Vigo D (2007) Recent advances in vehicle routing exact algorithms. 4OR 5(4): 269–298CrossRefGoogle Scholar
  2. Bard JF, Kontoravdis G, Yu G (2002) A branch-and-cut procedure for the vehicle routing problem with time windows. Transport Sci 36(2): 250–269CrossRefGoogle Scholar
  3. Boland N, Dethridge J, Dumitrescu I (2006) Accelerated label setting algorithms for the elementary resource constrained shortest path problem. Oper Res Lett 34(1): 58–68CrossRefGoogle Scholar
  4. Boussier S, Feillet D, Gendreau M (2007) An exact algorithm for team orienteering problems. 4OR 5: 211–230CrossRefGoogle Scholar
  5. Braysy O, Gendreau M (2005a) Vehicle routing problem with time windows, part i: route construction and local search algorithms. Transport Sci 39(1): 104–118CrossRefGoogle Scholar
  6. Braysy O, Gendreau M (2005b) Vehicle routing problem with time windows, part ii: metaheuristics. Transport Sci 39(1): 119–139CrossRefGoogle Scholar
  7. Briant O, Lemaréchal C, Meurdesoif P, Michel S, Perrot N, Vanderbeck F (2008) Comparison of bundle and classical column generation. Math Program 113(2): 299–344CrossRefGoogle Scholar
  8. Chabrier A (2006) Vehicle routing problem with elementary shortest path based column generation. Comput Oper Res 33: 2972–2990CrossRefGoogle Scholar
  9. Cook W, Rich JL (1999) A parallel cutting-plane algorithm for the vehicle routing problem with time windows. Technical report TR99-04, Department of Computational and Applied Mathematics, Rice UniversityGoogle Scholar
  10. Cordeau J-F, Desaulniers G, Desrosiers J, Solomon MM, Soumis F (2001) The VRP with time windows. In: Toth P, Vigo D (eds) The vehicle routing problem, SIAM monographs on discrete mathematics and applications. pp 157–194Google Scholar
  11. Desaulniers G, Desrosiers J, Solomon MM (2001) Accelerating strategies in column generation methods for vehicle routing and crew scheduling problems. In: Ribeiro CC, Hansen P (eds) Essays and surveys in metaheuristics. Kluwer, Boston, pp 309–324Google Scholar
  12. Desaulniers G, Desrosiers J, Solomon MM (eds) (2005) Column generation. GERAD 25th Anniversary Series. SpringerGoogle Scholar
  13. Desaulniers G, Desrosiers J, Spoorendonk S (2009) Cutting planes for branch-and-price algorithms. Technical report G-2009-52, GERAD, CanadaGoogle Scholar
  14. Desaulniers G, Lessard F, Hadjar A (2008) Tabu search, partial elementarity, and generalized k-path inequalities for the vehicle routing problem with time windows. Transport Sci 42(3): 387–404CrossRefGoogle Scholar
  15. Desrochers M, Desrosiers J, Solomon MM (1992) A new optimization algorithm for the vehicle routing problem with time windows. Oper Res 40(2): 342–354CrossRefGoogle Scholar
  16. Dror M (1994) Note on the complexity of the shortest path models for column generation in VRPTW. Oper Res 42(5): 977–978CrossRefGoogle Scholar
  17. du Merle O, Villeneuve D, Desrosiers J, Hansen P (1999) Stabilized column generation. Discrete Math 194(1-3): 229–237CrossRefGoogle Scholar
  18. Feillet D, Dejax P, Gendreau M, Gueguen C (2004) An exact algorithm for the elementary shortest path problem with resource constraints: application to some vehicle routing problems. Networks 44(3): 216–229CrossRefGoogle Scholar
  19. Frangioni A (2002) Generalized bundle methods. SIAM J Optim 13(1): 117–156CrossRefGoogle Scholar
  20. Goffin JL, Vial JP (2002) Convex nondifferentiable optimization: a survey focused on the analytic center cutting plane method. Optim Methods Softw 17(5): 805–867CrossRefGoogle Scholar
  21. Irnich S, Desaulniers G (2005) Shortest path problems with resource constraints. In: Desaulniers G, Desrosiers J, Solomon MM (eds) Column generation, GERAD 25th anniversary series, chap 2. Springer, pp 33–65Google Scholar
  22. Irnich S, Villeneuve D (2006) The shortest path problem with k-cycle elimination for k≥3. Transport Sci 18(3): 391–406Google Scholar
  23. Jepsen M, Petersen B, Spoorendonk S, Pisinger D (2008) Subset row inequalities applied to the vehicle routing problem with time windows. Oper Res 56(2): 497–511CrossRefGoogle Scholar
  24. Kallehauge B, Larsen J, Madsen OBG (2001) Lagrangean duality applied on vehicle routing with time windows—experimental results. Technical report IMM-TR-2001-9, IMM, Technical University of DenmarkGoogle Scholar
  25. Kallehauge B, Larsen J, Madsen OBG (2006) Lagrangian duality applied to the vehicle routing problem with time windows. Comput Oper Res 33(5): 1464–1487CrossRefGoogle Scholar
  26. Kelley JE (1960) The cutting plane method for solving convex programs. J SIAM 8: 703–712Google Scholar
  27. Kim S, Chang K-N, Lee J-Y (1995) A descent method with linear programming subproblems for nondifferentiable convex optimization. Math Program 71: 17–28CrossRefGoogle Scholar
  28. Kohl N, Desrosiers J, Madsen OBG, Solomon MM, Soumis F (1999) 2-path cuts for the vehicle routing problem with time windows. Transport SciGoogle Scholar
  29. Lemaréchal C, Nemirovskii A, Nesterov Y (1995) New variants of bundle methods. Math Program 69: 111–149CrossRefGoogle Scholar
  30. Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Oper Res 53(6):1007–1023CrossRefGoogle Scholar
  31. Marsten RE, Hogan WW, Blankenship JW (1975) The BOXSTEP method for large-scale optimization. Oper Res 23: 389–405CrossRefGoogle Scholar
  32. Neame PJ (1999) Nonsmooth dual methods in integer programming. PhD thesis, University of MelbourneGoogle Scholar
  33. Righini G, Salani M (2008) New dynamic programming algorithms for the resource constrained elementary shortest path problem. Networks 51(3): 155–170CrossRefGoogle Scholar
  34. Rousseau L-M, Gendreau M, Feillet D (2007) Interior point stabilization for column generation. Oper Res Lett 35: 660–668CrossRefGoogle Scholar
  35. Spoorendonk S (2008) Cut and column generation. PhD thesis, Technical University of DenmarkGoogle Scholar
  36. Spoorendonk S, Desaulniers G (2008) Clique inequalities applied to the vehicle routing problem with time windows. Technical report G-2008-72, GERAD, Canada. Forthcoming in INFORGoogle Scholar
  37. Vanderbeck F (2000) On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm. Oper Res 48(1): 111–128CrossRefGoogle Scholar
  38. Vanderbeck F (2005) Implementing mixed integer column generation. In: Desaulniers G, Desrosiers J, Solomon MM (eds) Column generation, GERAD 25th anniversary series, chap 12. Springer, pp 331–358Google Scholar
  39. Vanderbeck F, Savelsbergh MWP (2006) A generic view of Dantzig-Wolfe decomposition in mixed integer programming. Oper Res Lett 34: 296–306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Ecole Nationale Supérieure des Mines de Saint-Etienne, CMP Georges CharpakGardanneFrance

Personalised recommendations