, Volume 8, Issue 3, pp 239–253 | Cite as

Diversification-driven tabu search for unconstrained binary quadratic problems

  • Fred GloverEmail author
  • Zhipeng Lü
  • Jin-Kao Hao
Research Paper


This paper describes a Diversification-Driven Tabu Search (D2TS) algorithm for solving unconstrained binary quadratic problems. D2TS is distinguished by the introduction of a perturbation-based diversification strategy guided by long-term memory. The performance of the proposed algorithm is assessed on the largest instances from the ORLIB library (up to 2500 variables) as well as still larger instances from the literature (up to 7000 variables). The computational results show that D2TS is highly competitive in terms of both solution quality and computational efficiency relative to some of the best performing heuristics in the literature.


UBQP Tabu search Diversification-driven Long-term memory 

Mathematics Subject Classification (2000)

90C27 80M50 65K10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alidaee B, Kochenberger GA, Ahmadian A (1994) 0–1 quadratic programming approach for the optimal solution of two scheduling problems. Int J Syst Sci 25: 401–408CrossRefGoogle Scholar
  2. Alidaee B, Kochenberger GA, Lewis K, Lewis M, Wang H (2008) A new approach for modeling and solving set packing problems. Eur J Oper Res 86(2): 504–512CrossRefGoogle Scholar
  3. Alkhamis TM, Hasan M, Ahmed MA (1998) Simulated annealing for the unconstrained binary quadratic pseudo-boolean function. Eur J Oper Res 108: 641–652CrossRefGoogle Scholar
  4. Amini M, Alidaee B, Kochenberger GA (1999) A scatter search approach to unconstrained quadratic binary programs. McGraw-Hill, New York, pp 317–330. New Methods in OptimizationGoogle Scholar
  5. Beasley JE (1996) Obtaining test problems via internet. J Glob Optim 8: 429–433CrossRefGoogle Scholar
  6. Beasley JE (1998) Heuristic algorithms for the unconstrained binary quadratic programming problem. Working Paper, The Management School, Imperial College, London, EnglandGoogle Scholar
  7. Borgulya I (2005) An evolutionary algorithm for the binary quadratic problems. Adv Soft Comput 2: 3–16CrossRefGoogle Scholar
  8. Boros E, Hammer PL, Tavares G (2007) Local search heuristics for quadratic unconstrained binary optimization (QUBO). J Heuristics 13: 99–132CrossRefGoogle Scholar
  9. Chardaire P, Sutter A (1994) A decomposition method for quadratic zero-one programming. Manage Sci 41(4): 704–712CrossRefGoogle Scholar
  10. Gallo G, Hammer P, Simeone B (1980) Quadratic knapsack problems. Math Programm 12: 132–149Google Scholar
  11. Glover F, Hao JK (2009a) Efficient evaluations for solving large 0-1 unconstrained quadratic optimization problems. To appear in Int J Metaheuristics, 1(1)Google Scholar
  12. Glover F, Hao JK (2009b) Fast 2-flip move evaluations for binary unconstrained quadratic optimization problems. To appear in Int J MetaheuristicsGoogle Scholar
  13. Glover F, Laguna M (1997) Tabu search. Kluwer, BostonGoogle Scholar
  14. Glover F, Kochenberger GA, Alidaee B (1998) Adaptive memory tabu search for binary quadratic programs. Manag Sci 44: 336–345CrossRefGoogle Scholar
  15. Harary F (1953) On the notion of balanced of a signed graph. Mich Math J 2: 143–146CrossRefGoogle Scholar
  16. Katayama K, Narihisa H (2001) Performance of simulated annealing-based heuristic for the unconstrained binary quadratic programming problem. Eur J Oper Res 134: 103–119CrossRefGoogle Scholar
  17. Katayama K, Tani M, Narihisa H (2000) Solving large binary quadratic programming problems by an effective genetic local search algorithm. In: Proceedings of the genetic and evolutionary computation conference (GECCO’00). Morgan Kaufmann, pp 643–650Google Scholar
  18. Kochenberger GA, Glover F, Alidaee B, Rego C (2004) A unified modeling and solution framework for combinatorial optimization problems. OR Spectrum 26: 237–250CrossRefGoogle Scholar
  19. Kochenberger GA, Glover F, Alidaee B, Rego C (2005) An unconstrained quadratic binary programming approach to the vertex coloring problem. Ann Oper Res 139: 229–241CrossRefGoogle Scholar
  20. Krarup J, Pruzan A (1978) Computer aided layout design. Math Programm Study 9: 75–94Google Scholar
  21. Laughunn DJ (1970) Quadratic binary programming. Oper Res 14: 454–461CrossRefGoogle Scholar
  22. Lewis M, Kochenberger GA, Alidaee B (2008) A new modeling and solution approach for the set-partitioning problem. Comput Oper Res 35(3): 807–813CrossRefGoogle Scholar
  23. Lodi A, Allemand K, Liebling TM (1999) An evolutionary heuristic for quadratic 0-1 programming. Eur J Oper Res 119(3): 662–670CrossRefGoogle Scholar
  24. Lü Z, Hao JK (2009) A critical element-guided perturbation strategy for iterated local search. In: Cotta C, Cowling P (eds) Ninth European conference on evolutionary computation in combinatorial optimization (EvoCop 2009). Springer, LNCS 5482, pp 1–12Google Scholar
  25. McBride RD, Yormark JS (1980) An implicit enumeration algorithm for quadratic integer programming. Manag Sci 26: 282–296CrossRefGoogle Scholar
  26. Merz P, Freisleben B (1999) Genetic algorithms for binary quadratic programming. In: Proceedings of the genetic and evolutionary computation conference (GECCO’99). Morgan Kaufmann, pp 417–424Google Scholar
  27. Merz P, Freisleben B (2002) Greedy and local search heuristics for unconstrained binary quadratic programming. J Heuristics 8: 197–213CrossRefGoogle Scholar
  28. Merz P, Katayama K (2004) Memetic algorithms for the unconstrained binary quadratic programming problem. BioSystems 78: 99–118CrossRefGoogle Scholar
  29. Palubeckis G (2004) Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann Oper Res 131: 259–282CrossRefGoogle Scholar
  30. Palubeckis G (2006) Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica 17(2): 279–296Google Scholar
  31. Pardalos P, Rodgers GP (1990) Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45: 131–144CrossRefGoogle Scholar
  32. Pardalos P, Xue J (1994) The maximum clique problem. J Glob Optim 4: 301–328CrossRefGoogle Scholar
  33. Phillips AT, Rosen JB (1994) A quadratic assignment formulation of the molecular conformation problem. J Glob Optim 4: 229–241CrossRefGoogle Scholar
  34. Witsgall C (1975) Mathematical methods of site selection for electronic system (ems). NBS Internal ReportGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.OptTek Systems, Inc.BoulderUSA
  2. 2.LERIA, Université d’AngersAngers Cedex 01France

Personalised recommendations