, Volume 8, Issue 1, pp 49–70 | Cite as

A memetic algorithm for the team orienteering problem

Research Paper


The team orienteering problem (TOP) is a generalization of the orienteering problem. A limited number of vehicles is available to visit customers from a potential set. Each vehicle has a predefined running-time limit, and each customer has a fixed associated profit. The aim of the TOP is to maximize the total collected profit. In this paper we propose a simple hybrid genetic algorithm using new algorithms dedicated to the specific scope of the TOP: an Optimal Split procedure for chromosome evaluation and local search techniques for mutation. We have called this hybrid method a memetic algorithm for the TOP. Computational experiments conducted on standard benchmark instances clearly show our method to be highly competitive with existing ones, yielding new improved solutions in at least 5 instances.


Selective vehicle routing problem Memetic algorithm Optimal split Metaheuristic Destruction/construction 

MSC classification (2000)

90B06 90C27 90C59 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archetti C, Hertz A, Speranza M (2006) Metaheuristics for the team orienteering problem. J Heuristics 13(1): 49–76CrossRefGoogle Scholar
  2. Beasley JE (1983) Route-first cluster-second methods for vehicle routing. Omega 11: 403–408CrossRefGoogle Scholar
  3. Belenguer J-M, Benavent E, Lacomme P, Prins C (2006) Lower and upper bounds for the mixed capacitated arc routing problem. Comput Oper Res 33(12): 3363–3383CrossRefGoogle Scholar
  4. Bellman R (1957) Dynamic Programming. Princeton University Press, PrincetonGoogle Scholar
  5. Bouly H, Dang D-C, Moukrim A (2008) A memetic algorithm for the team orienteering problem. In EvoWorkshopsGoogle Scholar
  6. Boussier S, Feillet D, Gendreau M (2007) An exact algorithm for team orienteering problems. 4OR 5(3): 211–230CrossRefGoogle Scholar
  7. Butt S, Cavalier T (1994) A heuristic for the multiple tour maximum collection problem. Comput Oper Res 21: 101–111CrossRefGoogle Scholar
  8. Chao I-M, Golden B, Wasil E (1996) The team orienteering problem. Eur J Oper Res 88: 464–474CrossRefGoogle Scholar
  9. Feillet D, Dejax P, Gendreau M (2005) Traveling salesman problems with profits. Transp Sci 39(2): 188–205CrossRefGoogle Scholar
  10. Ke L, Archetti C, Feng Z (2008) Ants can solve the team orienteering problem. Comput Ind Eng 54(3): 648–665 ISSN 0360-8352CrossRefGoogle Scholar
  11. Khemakhem M, Chabchoub H, Semet F (2007) Heuristique basée sur la mémoire adaptative pour le problème de tournées de véhicules sélectives. In Logistique & Transport, pp 31–37, Sousse, TunisieGoogle Scholar
  12. Lacomme P, Prins C, Ramdane-Cherif W (2004) Competitive memetic algorithms for arc routing problems. Ann Oper Res 131(1–4): 159–185CrossRefGoogle Scholar
  13. Moscato P (1999) New ideas in optimization. chapter Memetic Algorithms: a short introduction. McGraw-Hill, UK, pp 219–234Google Scholar
  14. Prins C (2004) A simple and effective evolutionary algorithm for the vehicle routing problem. Comput Oper Res 31(12): 1985–2002CrossRefGoogle Scholar
  15. Ruiz R Stützle T (2007) A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. EJOR 177: 2033–2049CrossRefGoogle Scholar
  16. Solomon M (1987) Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper Res 35: 254–265CrossRefGoogle Scholar
  17. Tang H, Miller-Hooks E (2005) A tabu search heuristic for the team orienteering problem. Comput Oper Res 32: 1379–1407CrossRefGoogle Scholar
  18. Ulusoy G (1985) The fleet size and mixed problem for capacitated arc routing. Eur J Oper Res 22: 329–337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Université de Technologie de Compiègne Heudiasyc, CNRS UMR 6599CompiègneFrance
  2. 2.VEOLIA Environnement, Direction de la RechercheParisFrance

Personalised recommendations