4OR

, 7:239 | Cite as

Operator non-availability periods

  • N. Brauner
  • G. Finke
  • V. Lehoux-Lebacque
  • C. Rapine
  • H. Kellerer
  • C. Potts
  • V. Strusevich
Research Paper

Abstract

In the scheduling literature, the notion of machine non-availability periods is well known, for instance for maintenance. In our case of planning chemical experiments, we have special periods (the week-ends, holidays, vacations) where the chemists are not available. However, human intervention by the chemists is required to handle the starting and termination of the experiments. This gives rise to a new type of scheduling problems, namely problems of finding schedules that respect the operator non-availability periods. These problems are analyzed on a single machine with the makespan as criterion. Properties are described and performance ratios are given for list scheduling and other polynomial-time algorithms.

Keywords

One-machine scheduling Operator non-availability Complexity List algorithms Performance analysis 

MSC classification (2000)

90B35 68W25 68Q17 

References

  1. Breit J, Schmidt G, Strusevich VA (2003) Non-preemptive two-machine open shop scheduling with non-availability constraints. Math Methods Oper Res 34: 217–234CrossRefGoogle Scholar
  2. Brucker P, Dhaenens-Flipo C, Knust S, Kravchenko SA, Werner F (2002) Complexity results for parallel machine problems with a single server. J Schedul 5: 429–457CrossRefGoogle Scholar
  3. Hall NG, Potts C, Sriskandarajah C (2000) Parallel machine scheduling with a common server. Discrete Appl Math 102: 223–243CrossRefGoogle Scholar
  4. Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer, BerlinGoogle Scholar
  5. Lebacque V, Brauner N, Celse B, Finke G, Rapine C (2007) Planification d’expériences dans l’industrie chimique, Chap. 1, pp 21–32. Dans Les systèmes de production applications interdisciplinaires et mutations sous la direction de Boujut J-F, Llerena D, Brissaud D, Hermès-Lavoisier, ISBN 978-2-7462-1819-2Google Scholar
  6. Lee C-Y (1996) Machine scheduling with an availability constraint. J Glob Optim 9: 395–416CrossRefGoogle Scholar
  7. Lee C-Y (2004) Machine scheduling with availability constraints. In: Leung JYT(eds) Handbook of scheduling: algorithms, models and performance analysis. Chapman & Hall/CRC, London, pp 22-1–22-13Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • N. Brauner
    • 1
  • G. Finke
    • 1
  • V. Lehoux-Lebacque
    • 1
  • C. Rapine
    • 1
  • H. Kellerer
    • 2
  • C. Potts
    • 3
  • V. Strusevich
    • 4
  1. 1.G-SCOP, INPGrenoble, UJF, CNRSUniversity of GrenobleGrenoble CedexFrance
  2. 2.Institute for Statistics and Operations ResearchUniversity of GrazGrazAustria
  3. 3.School of MathematicsUniversity of SouthamptonSouthamptonUK
  4. 4.School of Computing and Mathematical SciencesUniversity of GreenwichLondonUK

Personalised recommendations