Advertisement

4OR

, Volume 6, Issue 2, pp 143–165 | Cite as

R UBIS: a bipolar-valued outranking method for the choice problem

  • Raymond Bisdorff
  • Patrick Meyer
  • Marc Roubens
Regular paper

Abstract

The main concern of this article is to present the R UBIS method for tackling the choice problem in the context of multiple criteria decision aiding. Its genuine purpose is to help a decision maker to determine a single best decision alternative. Methodologically we focus on pairwise comparisons of these alternatives which lead to the concept of bipolar-valued outranking digraph. The work is centred around a set of five pragmatic principles which are required in the context of a progressive decision aiding methodology. Their thorough study and implementation in the outranking digraph lead us to define a choice recommendation as an extension of the classical digraph kernel concept.

Keywords

Choice problematique Multiple criteria outranking method Progressive decision aiding methodology Digraph kernel 

MSC Classification (2000)

05C20 90B50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belton V, Stewart T (2002) Multiple criteria decision analysis: an integrated approach. Kluwer, DordrechtGoogle Scholar
  2. Berge C (1970) Graphes et hypergraphes. Dunod, ParisGoogle Scholar
  3. Bisdorff R (1997) On computing kernels from l-valued simple graphs. In: Proceedings of the 5th European Congress on intelligent techniques and soft computing, vol 1, pp 97–103. EUFIT’97, AachenGoogle Scholar
  4. Bisdorff R (2000) Logical foundation of fuzzy preferential systems with application to the electre decision aid methods. Comput Oper Res 27:673–687CrossRefGoogle Scholar
  5. Bisdorff R (2002) Logical foundation of multicriteria preference aggregation. In: Bouyssou D, Jacquet-Lagrèze E, Perny P, Slowinski R, Vanderpooten D, Vincke PH (eds) Aiding decisions with multiple criteria: essays in honour of Bernard Roy. Kluwer, Dordrecht, pp 379–403Google Scholar
  6. Bisdorff R (2004) Concordant outranking with multiple criteria of ordinal significance. 4OR, Quarterly Journal of the Belgian, French and Italian Operations Research Societies, vol 2(4). Springer, Heidelberg, pp 293–308Google Scholar
  7. Bisdorff R (2006a) The Python digraph implementation for RuBy: user manual. University of Luxembourg, Luxembourg, http://sma.uni.lu/bisdorff/DigraphGoogle Scholar
  8. Bisdorff R (2006b) On enumerating the kernels in a bipolar-valued outranking digraph. In: Bouyssou D, Roberts F, Tsoukiás A (eds) Proceedings of the DIMACS-LAMSADE workshop on voting theory and preference modelling, Paris, 25–28 October 2006, vol 6 of Annales du LAMSADE, pp 1–38. Université Paris-Dauphine, CNRS, ParisGoogle Scholar
  9. Bisdorff R, Roubens M (1998) On defining and computing fuzzy kernels from l-valued simple graphs. In: Ruan D, D’hondt P, Govaerts P, Kerre E (eds) Intelligent systems and soft computing for nuclear science and industry, FLINS’96 workshop. World Scientific Publishers, Singapoure, pp 113–123Google Scholar
  10. Bisdorff R, Roubens M (2003) Choice procedures in pairwise comparison multiple-attribute decision making methods. In: Berghammer R, Möller B, Struth G (eds) Relational and Kleene-algebraic methods in computer science: 7th international seminar on relational methods in computer science and 2nd international workshop on applications of Kleene algebra, vol 3051 of lecture notes in computer science. Springer, Heidelberg, pp 1–7Google Scholar
  11. Bisdorff R, Pirlot M, Roubens M (2006) Choices and kernels in bipolar valued digraphs. Eur J Oper Res 175:155–170CrossRefGoogle Scholar
  12. Bouyssou D (1996) Outranking relations: do they have special properties? J Multi Criteria Decision Anal 5:99–111CrossRefGoogle Scholar
  13. Chvátal V (1973) On the computational complexity of finding a kernel. Technical report, Report No. CRM-300, Centre de recherches mathématiques, Université de Montréal, MontréalGoogle Scholar
  14. Kitainik L (1993) Fuzzy decision procedures with binary relations: towards a unified theory. Kluwer, BostonGoogle Scholar
  15. Richardson M (1953) Solution of irreflectice relations. Ann Math 58:573–580CrossRefGoogle Scholar
  16. Roy B (1968) Classement et choix en présence de points de vue multiples (la méthode ELECTRE). Rev Fr Inf Rech Oper 2:57–75Google Scholar
  17. Roy B (1985) Méthodologie multicritère d’aide à la décision. Economica, ParisGoogle Scholar
  18. Roy B, Bouyssou D (1993) Aide multicritère à la décision : Méthodes et cas. Economica, ParisGoogle Scholar
  19. Roy B, Vanderpooten D (1996) The European school of MCDA: emergence, basic features and current works. J Multi Criteria Decis Anal 5:22–38CrossRefGoogle Scholar
  20. Windelband W (1884) Beiträge zur Lehre vom negativen Urteil. In: Straßburger Abhandlungen zur Philosophie: Eduard Zeller zu seinem 70. Geburtstage, pp 165–195. StrasbourgGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Applied Mathematics UnitUniversity of LuxembourgLuxembourgG.D. Luxembourg
  2. 2.Faculté Polytechnique de MonsMonsBelgium

Personalised recommendations