4OR

, Volume 5, Issue 3, pp 211–230 | Cite as

An exact algorithm for team orienteering problems

  • Sylvain Boussier
  • Dominique Feillet
  • Michel Gendreau
Regular paper

Abstract

Optimising routing of vehicles constitutes a major logistic stake in many industrial contexts. We are interested here in the optimal resolution of special cases of vehicle routing problems, known as team orienteering problems. In these problems, vehicles are guided by a reward that can be collected from customers, while the length of routes is limited. The main difference with classical vehicle routing problems is that not all customers have to be visited. The solution method we propose here is based on a Branch & Price algorithm. It is, as far as we know, the first exact method proposed for such problems, except for a preliminary work from Gueguen (Methodes de résolution exacte pour problémes de tournées de véhicules. Thése de doctorat, école Centrale Paris 1999) and a work from Butt and Ryan (Comput Oper Res 26(4):427–441 1999). It permits to solve instances with up to 100 customers.

Keywords

Selective vehicle routing problem with time windows Team orienteering problem Column generation Branch & price Routing problems with profits 

MSC Classification

90C10 90C35 90C90 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archetti C, Hertz A, Speranza MG (2005) Metaheuristics for the team orienteering problem. Technical Report GERAD-2005-47, Groupes d’Etudes et de Recherche en Analyse des DcisionsGoogle Scholar
  2. Butt SE, Ryan DM (1999) An optimal solution procedure for the multiple tour maximum collection problem using column generation. Comput Oper Res 26(4): 427–441CrossRefGoogle Scholar
  3. Chao I-M, Golden BL, Wasil EA (1996) The team orienteering problem. Eur J Oper Res 88(3): 464–474CrossRefGoogle Scholar
  4. Desaulniers G, Desrosiers J, Solomon MM (eds) (2005) Column generation. GERAD 25th Anniversary Series. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. Desrochers M, Desrosiers J, Solomon MM (1992) A new optimization algorithm for the vehicle routing problem with time windows. Oper Res 40(2): 342–354CrossRefGoogle Scholar
  6. Feillet D, Dejax P, Gendreau M, Gueguen C (2004) An exact algorithm for the elementary shortest path problem with resource constraints: application to some vehicle routing problems. Networks 44 (3): 216–229CrossRefGoogle Scholar
  7. Feillet D, Dejax P, Gendreau M (2005a). Traveling salesman problems with profits. Transp Sci 39(2): 188–205CrossRefGoogle Scholar
  8. Feillet D, Gendreau M, Rousseau LM (2005b) New refinements for the solution of vehicle routing problems with branch and price. Technical Report CRT-2005-08, Centre de Recherche sur les TransportsGoogle Scholar
  9. Gueguen C (1999) Méthodes de résolution exacte pour les problèmes de tournées de véhicules. Thése de doctorat, école Centrale ParisGoogle Scholar
  10. Gueguen C (2006) Private communicationGoogle Scholar
  11. Harvey W, Ginsberg M (1995) Limited discrepancy search. In: Proceedings of the 14th international joint conference on artificial intelligence (IJCAI-95), Morgan Kaufmann, Montréal, pp. 607–615Google Scholar
  12. Hayari N, Manier M-A, Bloch C, El Moudni A (2003) Un algorithme évolutionniste pour le problème de tournées sélectives avec contraintes de fenêtre de temps. In 4ème Conférence Francophone de MOdélisation et SIMulation MOSIM’03, ToulouseGoogle Scholar
  13. Irnich S, Desaulniers G (2005) Shortest path problems with resource constraints. In: Desaulniers G, Desrosiers J, Solomon MM, (eds) Column generation, GERAD 25th Anniversary Series, chap 2, pp. 33–65, Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Laporte G, Martello S (1990) The selective traveling salesman problem. Discrete Appl Math 26:193–207CrossRefGoogle Scholar
  15. Tang H, Miller-Hooks E (2005) A tabu search heuristic for the team orienteering problem. Comput Oper Res 32(6): 1379–1407CrossRefGoogle Scholar

Copyright information

© Springer Verlag 2006

Authors and Affiliations

  • Sylvain Boussier
    • 1
  • Dominique Feillet
    • 2
  • Michel Gendreau
    • 3
  1. 1.LGI2P, Ecole des Mines d’Alès - Site EERIEParc Scientifique Georges BesseNimes Cedex 1France
  2. 2.Laboratoire d’informatique d’AvignonUniversité d’Avignon et des pays de VaucluseAvignon Cedex 9France
  3. 3.Centre de recherche sur les transportsUniversité de MontréalMontréalCanada

Personalised recommendations