Advertisement

The wait-and-judge scenario approach applied to antenna array design

  • Algo CarèEmail author
  • Simone Garatti
  • Marco C. Campi
Original Paper
  • 61 Downloads

Abstract

The scenario optimisation approach is a methodology for finding solutions to uncertain convex problems by resorting to a sample of data, which are called “scenarios”. In a min–max set-up, the solution delivered by the scenario approach comes with tight probabilistic guarantees on its risk defined as the probability that an empirical cost threshold will be exceeded when the scenario-based solution is adopted. While the standard theory of scenario optimisation has related the risk of the data-based solution to the number of optimisation variables, a more recent approach, called the “wait-and-judge” scenario approach, enables the user to assess the risk of the solution in a data-dependent way, based on the number of decisive scenarios (“support scenarios”). The aim of this paper is to illustrate the potentials of the wait-and-judge approach for min–max sample-based design and we shall consider to this purpose an antenna array design problem.

Keywords

Scenario approach Data-driven optimisation Min–max design 

Notes

References

  1. Alamo T, Tempo R, Luque A, Ramirez DR (2015) Randomized methods for design of uncertain systems: sample complexity and sequential algorithms. Automatica 52:160–172Google Scholar
  2. Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, PrincetonGoogle Scholar
  3. Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805Google Scholar
  4. Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization. SIAMGoogle Scholar
  5. Ben-Tal A, Nemirovski A (2002) Robust optimization-methodology and applications. Math Program 92(3):453–480Google Scholar
  6. Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53.  https://doi.org/10.1287/opre.1030.0065 Google Scholar
  7. Bertsimas D, Gupta V, Kallus N (2017) Data-driven robust optimization. Math Program.  https://doi.org/10.1007/s10107-017-1125-8 Google Scholar
  8. Calafiore GC, Campi MC (2005) Uncertain convex programs: randomized solutions and confidence levels. Math Program 102(1):25–46.  https://doi.org/10.1007/s10107-003-0499-y Google Scholar
  9. Calafiore G, Campi MC (2006) The scenario approach to robust control design. IEEE Trans Autom Control 51(5):742–753Google Scholar
  10. Campi MC, Garatti S (2008) The exact feasibility of randomized solutions of uncertain convex programs. SIAM J Optim 19(3):1211–1230.  https://doi.org/10.1137/07069821X Google Scholar
  11. Campi MC, Carè A (2013) Random convex programs with L1-regularization: sparsity and generalization. SIAM J Control Optim 51(5):3532–3557Google Scholar
  12. Campi MC, Garatti S, Prandini M (2009) The scenario approach for systems and control design. Annu Rev Control 33(2):149–157.  https://doi.org/10.1016/j.arcontrol.2009.07.001 Google Scholar
  13. Campi MC, Garatti S (2018) Wait-and-judge scenario optimization. Math Program 167(1):155–189.  https://doi.org/10.1007/s10107-016-1056-9 Google Scholar
  14. Carè A, Garatti S, Campi MC (2014) FAST—fast algorithm for the scenario technique. Oper Res 62(3):662–671Google Scholar
  15. Carè A, Garatti S, Campi MC (2015) Scenario min–max optimization and the risk of empirical costs. SIAM J Optim 25(4):2061–2080Google Scholar
  16. Charnes A, Cooper W (1959) Chance constrained programming. Manag Sci 6(1):73–79Google Scholar
  17. Dantzig G (1955) Linear programming under uncertainty. Manag Sci 1(3–4):197–206Google Scholar
  18. Dentcheva D (2006) Optimization models with probabilistic constraints. In: Calafiore G, Dabbene F (eds) Probabilistic and randomized methods for design under uncertainty. Springer, LondonGoogle Scholar
  19. de Mello TH, Bayraksan G (2014) Monte Carlo sampling-based methods for stochastic optimization. Surv Oper Res Manag Sci 19(1):56–85Google Scholar
  20. El Ghaoui L, Lebret H (1998) Robust solutions to uncertain semidefinite programs. SIAM J Optim 9(1):33–52Google Scholar
  21. Hanasusanto GA, Roitch V, Kuhn D, Wiesemann W (2015) A distributionally robust perspective on uncertainty quantification and chance constrained programming. Math Program 151(1):35–62.  https://doi.org/10.1007/s10107-015-0896-z Google Scholar
  22. Hanasusanto GA, Roitch V, Kuhn D, Wiesemann W (2017) Ambiguous joint chance constraints under mean and dispersion information. Oper Res 65(3):751–767.  https://doi.org/10.1287/opre.2016.1583 Google Scholar
  23. IBM-ILOG: V12.4: Users manual for CPLEX (2012)Google Scholar
  24. Margellos K, Goulart P, Lygeros J (2014) On the road between robust optimization and the scenario approach for chance constrained optimization problems. IEEE Trans Autom Control 59(8):2258–2263Google Scholar
  25. MATLAB: version 8.1.0.604 (R2013a). The MathWorks Inc., Natick, Massachusetts (2013)Google Scholar
  26. Matyjas JD, Kumar S, Hu F (2015) Wireless network performance enhancement via directional antennas: models, protocols, and systems. CRC Press, Boca RatonGoogle Scholar
  27. Pagnoncelli B, Ahmed S, Shapiro A (2009) Sample average approximation method for chance constrained programming: theory and applications. J Optim Theory Appl 142(2):399–416Google Scholar
  28. Petersen IR, Tempo R (2014) Robust control of uncertain systems: classical results and recent developments. Automatica 50:1315–1335Google Scholar
  29. Prékopa A (2003) Probabilistic programming. In: Ruszczyński A, Shapiro A (eds) Stochastic programming, handbooks in operations research and management science, vol 10. Elsevier, LondonGoogle Scholar
  30. Schildbach G, Fagiano L, Morari M (2013) Randomized solutions to convex programs with multiple chance constraints. SIAM J Optim 23(4):2479–2501Google Scholar
  31. Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory. MPS-SIAM, Philadelphia, Pennsylvania, USAGoogle Scholar
  32. Soyster A (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21(5):1154–1157Google Scholar
  33. Tempo R, Calafiore G, Dabbene F (2013) Randomized algorithms for analysis and control of uncertain systems -, 2nd edn. Springer, LondonGoogle Scholar
  34. Vayanos P, Kuhn D, Rustem B (2012) A constraint sampling approach for multistage robust optimization. Automatica 48(3):459–471Google Scholar
  35. Welsh J, Kong H (2011) Robust experiment design through randomisation with chance constraints. In: Proceedings of the 18th IFAC World Congress. Milan, ItalyGoogle Scholar
  36. Welsh J, Rojas C (2009) A scenario based approach to robust experiment design. In: Proceedings of the 15th IFAC Symposium on System Identification. Saint-Malo, FranceGoogle Scholar
  37. Zhang X, Grammatico S, Schildbach G, Goulart P, Lygeros J (2015) On the sample size of random convex programs with structured dependence on the uncertainty. Automatica 60:182–188Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of BresciaBresciaItaly
  2. 2.Politecnico di MilanoMilanoItaly

Personalised recommendations