Computational Management Science

, Volume 14, Issue 1, pp 161–177 | Cite as

Flow-based formulations for operational fixed interval scheduling problems with random delays

Original Paper
  • 131 Downloads

Abstract

We deal with operational fixed interval scheduling problem with random delays in job processing times. We formulate two stochastic programming problems. In the first problem with a probabilistic objective, all jobs are processed on available machines and the goal is to obtain a schedule with the highest attainable reliability. The second problem is to select a subset of jobs with the highest reward under a chance constraint ensuring feasibility of the schedule with a prescribed probability. We assume that the multivariate distribution of delays follows an Archimedean copula, whereas there are no restrictions on marginal distributions. We introduce new deterministic integer linear reformulations based on flow problems. We compare the formulations with the extended robust coloring problem, which was shown to be a deterministic equivalent to the stochastic programming problem with probabilistic objective by Branda et al. (Comput Ind Eng 93:45–54, 2016). In the numerical study, we report average computational times necessary to solve a large number of simulated instances. It turns out that the new flow-based formulation helps to solve the FIS problems considerably faster than the other one.

Keywords

Fixed interval scheduling Random delays Stochastic programming Flow-based formulation Archimedean copula Integer programming 

Mathematics Subject Classification

90C15 90B36 90C10 

Notes

Acknowledgments

The authors gratefully acknowledge that this project was supported by the Czech Science Foundation under the Grant P402/12/G097 (DYME). We would like to express our gratitude to the anonymous referees for their valuable comments which helped us to improve the paper.

References

  1. van Ackooij W (2015) Eventual convexity of chance constrained feasible sets. Optimization 64(5):1263–1284. doi:10.1080/02331934.2013.855211 CrossRefGoogle Scholar
  2. van Ackooij W, de Oliveira W (2016) Convexity and optimization with copula structured probabilistic constraints. Optimization, to appear:1–28. doi:10.1080/02331934.2016.1179302
  3. Angelelli E, Filippi C (2011) On the complexity of interval scheduling with a resource constraint. Theor Comput Sci 412(29):3650–3657. doi:10.1016/j.tcs.2011.03.025 CrossRefGoogle Scholar
  4. Angelelli E, Bianchessi N, Filippi C (2014) Optimal interval scheduling with a resource constraint. Comput Oper Res 51:268–281. doi:10.1016/j.cor.2014.06.002 CrossRefGoogle Scholar
  5. Beraldi P, Bruni M (2010) An exact approach for solving integer problems under probabilistic constraints with random technology matrix. Ann Oper Res 177(1):127–137. doi:10.1007/s10479-009-0670-9 CrossRefGoogle Scholar
  6. Branda M (2012) Sample approximation technique for mixed-integer stochastic programming problems with several chance constraints. Oper Res Lett 40(3):207–211. doi:10.1016/j.orl.2012.01.002 CrossRefGoogle Scholar
  7. Branda M, Novotný J, Olstad A, Popela P (2015) A note on fixed interval scheduling with stochastic elements. Inform Bull Czech Stat Soc 26(4):1–7. http://www.statspol.cz/en
  8. Branda M, Novotný J, Olstad A (2016) Fixed interval scheduling under uncertainty a tabu search algorithm for an extended robust coloring formulation. Comput Ind Eng 93:45–54. doi:10.1016/j.cie.2015.12.021 CrossRefGoogle Scholar
  9. Bremer I, Henrion R, Möller A (2015) Probabilistic constraints via SQP solver: application to a renewable energy management problem. Comput Manag Sci 12(3):435–459. doi:10.1007/s10287-015-0228-z CrossRefGoogle Scholar
  10. Brucker P, Qu R, Burke E (2011) Personnel scheduling: models and complexity. Eur J Oper Res 210(3):467–473. doi:10.1016/j.ejor.2010.11.017 CrossRefGoogle Scholar
  11. Castillo-Salazar JA, Landa-Silva D, Qu R (2016) Workforce scheduling and routing problems: literature survey and computational study. Ann Oper Res 239(1):39–67. doi:10.1007/s10479-014-1687-2 CrossRefGoogle Scholar
  12. Cheng J, Houda M, Lisser A (2015) Chance constrained 0–1 quadratic programs using copulas. Optim Lett 9(7):1283–1295. doi:10.1007/s11590-015-0854-y CrossRefGoogle Scholar
  13. CPLEX (version 12.1) IBM ILOG V12.1: user’s manual for CPLEX. ftp://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf. Accessed 12 Aug 2016
  14. Dentcheva D, Martinez G (2012) Augmented Lagrangian method for probabilistic optimization. Ann Oper Res 200(1):109–130. doi:10.1007/s10479-011-0884-5 CrossRefGoogle Scholar
  15. Eliiyi DT (2013) Integrating tactical and operational decisions in fixed job scheduling. Eng Optim 45(12):1449–1467. doi:10.1080/0305215X.2012.743532 CrossRefGoogle Scholar
  16. GAMS (version 24.3.3) GAMS user’s guide. http://www.gams.com/help/index.jsp
  17. Henrion R, Strugarek C (2011) Stochastic optimization methods in finance and energy: new financial products and energy market strategies. In: Convexity of chance constraints with dependent random variables: the use of copulae. Springer, New York, pp 427–439Google Scholar
  18. Kall P, Mayer J (2011) Stochastic linear programming: models, theory, and computation. International series in operations research & management science. Springer, New YorkCrossRefGoogle Scholar
  19. Kimberling CH (1974) A probabilistic interpretation of complete monotonicity. Aequ Math 10(2):152–164. doi:10.1007/BF01832852 CrossRefGoogle Scholar
  20. Kogan A, Lejeune MA (2014) Threshold boolean form for joint probabilistic constraints with random technology matrix. Math Progr 147(1):391–427. doi:10.1007/s10107-013-0728-y CrossRefGoogle Scholar
  21. Kolen AW, Lenstra JK, Papadimitriou CH, Spieksma FC (2007) Interval scheduling: a survey. Naval Res Logist 54(5):530–543CrossRefGoogle Scholar
  22. Kovalyov MY, Ng C, Cheng TE (2007) Fixed interval scheduling: models, applications, computational complexity and algorithms. Eur J Oper Res 178(2):331–342. doi:10.1016/j.ejor.2006.01.049 CrossRefGoogle Scholar
  23. Kroon LG, Salomon M, Wassenhove LNV (1995) Exact and approximation algorithms for the operational fixed interval scheduling problem. Eur J Oper Res 82(1):190–205. doi:10.1016/0377-2217(93)E0335-U CrossRefGoogle Scholar
  24. Kroon LG, Salomon M, Wassenhove LNV (1997) Exact and approximation algorithms for the tactical fixed interval scheduling problem. Oper Res 45(4):624–638CrossRefGoogle Scholar
  25. Luedtke J, Ahmed S (2008) A sample approximation approach for optimization with probabilistic constraints. SIAM J Optim 19(2):674–699. doi:10.1137/070702928 CrossRefGoogle Scholar
  26. Luedtke J, Ahmed S, Nemhauser G (2010) An integer programming approach for linear programs with probabilistic constraints. Math Progr 122(2):247–272. doi:10.1007/s10107-008-0247-4 CrossRefGoogle Scholar
  27. Mathematica (version 9) Wolfram documentation center. http://reference.wolfram.com/language/
  28. McNeil AJ, Nešlehová J (2009) Multivariate archimedean copulas, d-monotone functions and \(l_1\)-norm symmetric distributions. Ann Stat 37(5B):3059–3097. doi:10.1214/07-AOS556 CrossRefGoogle Scholar
  29. McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques and tools. Princeton series in finance. Princeton University Press, PrincetonGoogle Scholar
  30. Michalopoulos DP, Barnes JW, Morton DP (2015) Prioritized interdiction of nuclear smuggling via tabu search. Optim Lett 9(8):1477–1494. doi:10.1007/s11590-014-0829-4 CrossRefGoogle Scholar
  31. Molina-Pariente JM, Hans EW, Framinan JM, Gomez-Cia T (2015) New heuristics for planning operating rooms. Comput Ind Eng 90:429–443. doi:10.1016/j.cie.2015.10.002 CrossRefGoogle Scholar
  32. Nelsen R (1999) An introduction to copulas. Lecture notes in statistics. Springer, New YorkCrossRefGoogle Scholar
  33. Ng CT, Cheng TCE, Bandalouski AM, Kovalyov MY, Lam SS (2014) A graph-theoretic approach to interval scheduling. J Oper Res Soc 65(10):1571–1579. doi:10.1057/jors.2013.109 CrossRefGoogle Scholar
  34. Parisio A, Jones CN (2015) A two-stage stochastic programming approach to employee scheduling in retail outlets with uncertain demand. Omega 53:97–103. doi:10.1016/j.omega.2015.01.003 CrossRefGoogle Scholar
  35. Prékopa A (1995) Stochastic programming. Kluwer, Académiai Kiadó, Dordrecht and BudapestCrossRefGoogle Scholar
  36. Prékopa A (2003) Probabilistic programming. In: Ruszczyński A, Shapiro A (eds) Stochastic programming, handbooks in operations research and management science, vol 10. Elsevier, pp 267–351. doi:10.1016/S0927-0507(03)10005-9
  37. Ruszczyński A, Shapiro A (2003) Stochastic programming. Handbooks in operations research and management science. Elsevier, AmsterdamGoogle Scholar
  38. Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Algorithms and combinatorics. Springer, New YorkGoogle Scholar
  39. Shan F, Zhang L, Xiao X (2014) A smoothing function approach to joint chance-constrained programs. J Optim Theory Appl 163(1):181–199. doi:10.1007/s10957-013-0513-3 CrossRefGoogle Scholar
  40. Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming. MOS-SIAM series on optimization. SIAM Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  41. Tahanan M, van Ackooij W, Frangioni A, Lacalandra F (2015) Large-scale unit commitment under uncertainty. 4OR 13(2):115–171. doi:10.1007/s10288-014-0279-y CrossRefGoogle Scholar
  42. Toth P, Vigo D (2001) The vehicle routing problem. In: An overview of vehicle routing problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp 1–26Google Scholar
  43. Yánez J, Ramírez J (2003) The robust coloring problem. Eur J Oper Res 148(3):546–558. doi:10.1016/S0377-2217(02)00362-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Probability and Mathematical Statistics, Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations