Computational Management Science

, Volume 11, Issue 4, pp 503–516 | Cite as

A copula-based heuristic for scenario generation

  • Michal KautEmail author
Original paper


This paper presents a new heuristic for generating scenarios for two-stage stochastic programs. The method uses copulas to describe the dependence between the marginal distributions, instead of the more common correlations. The heuristic is then tested on a simple portfolio-selection model, and compared to two other scenario-generation methods.


Stochastic programming Scenario generation Copulas 


  1. Bouyé E, Durrleman V, Nikeghbali A, Riboulet G, Roncalli T (2000) Copulas for finance: a reading guide and some applications. Working paper, Crédit Lyonnais, Paris, 2000. Available at SSRN:
  2. Dupačová J, Consigli G, Wallace SW (2000) Scenarios for multistage stochastic programs. Annals Oper Res 100(1–4):25–53. doi: 10.1023/A:1019206915174 CrossRefGoogle Scholar
  3. Forrest J, Lougee-Heimer R (2005) CBC user guide. In: Greenberg HJ, Smith JC (eds) Tutorials in Operations research, INFORMS, chapter \(10\), pp 257–277Google Scholar
  4. Høyland K, Kaut M, Wallace SW (2003) A heuristic for moment-matching scenario generation. Comput Optim Appl 24(2–3):169–185. doi: 10.1023/A:1021853807313 CrossRefGoogle Scholar
  5. Hu L (2006) Dependence patterns across financial markets: a mixed copula approach. Appl Financial Econ 16(10):717–729. doi: 10.1080/09603100500426515 CrossRefGoogle Scholar
  6. Hultberg TH (2007) FLOPC++ an algebraic modeling language embedded in C++. In: Waldmann K-H, Stocker UM (eds) Proceedings operations research, vol 2006. Springer, Heidelberg, pp 187–190. doi: 10.1007/978-3-540-69995-8_31
  7. Kaut M, Wallace SW (2007) Evaluation of scenario-generation methods for stochastic programming. Pac J Optim 3(2):257–271Google Scholar
  8. Kaut M, Wallace SW (2011) Shape-based scenario generation using copulas. Comput Manag Sci 8(1–2):181–199. doi: 10.1007/s10287-009-0110-y Google Scholar
  9. Longin F, Solnik B (2001) Extreme correlation of international equity markets. J Finance 56(2):649–676CrossRefGoogle Scholar
  10. Makhorin A (2013a) GNU linear programming kit—reference manual, version 4.48. Free Software Foundation, Inc, BostonGoogle Scholar
  11. Makhorin A (2013b) GNU linear programming kit—modeling language GNU mathProg, version 4.48. Free Software Foundation, Inc, BostonGoogle Scholar
  12. Nelsen RB (1998) An introduction to copulas. Springer, New YorkGoogle Scholar
  13. Patton AJ (2004) On the out-of-sample importance of skewness and asymmetric dependence for asset allocation. J Financial Econ 2(1):130–168. doi: 10.1093/jjfinec/nbh006 CrossRefGoogle Scholar
  14. Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3):21–41Google Scholar
  15. Romano C (2002) Calibrating and simulating copula functions: an application to the italian stock market. Working paper 12, Centro Interdipartimale sul Diritto e l’Economia dei MercatiGoogle Scholar
  16. Sklar A (1996) Random variables, distribution functions, and copulas-a personal look backward and forward. In: Rüschendorff L, Schweizer B, Taylor M (eds) Distributions with fixed marginals and related topics, vol 28 of Lecture Notes—monograph, pp 1–14. Institute of Mathematical Statistics, Hayward. URL:
  17. Vaagen H, Wallace SW (2008) Product variety arising from hedging in the fashion supply chains. Int J Prod Econ 114(2):431–455. doi: 10.1016/j.ijpe.2007.11.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Industrial Economics and Technology ManagementNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Department of Applied Economics and Operations ResearchSINTEF Technology and SocietyTrondheimNorway

Personalised recommendations