Computational Management Science

, Volume 11, Issue 1–2, pp 157–178 | Cite as

Optimization of a linear function over the set of stochastic efficient solutions

  • Chaabane DjamalEmail author
  • Mebrek Fatma
Original Paper


In this paper we study the problem of optimization over an integer efficient set of a Multiple Objective Integer Linear Stochastic Programming problem. Once the problem is converted into a deterministic one by adapting the \(2\)-levels recourse approach, a new pivoting technique is applied to generate an optimal efficient solution without having to enumerate all of them. This method combines both techniques, the L-shaped method and the combined method developed in Chaabane and Pirlot (J Ind Manag Optim 6:811–823, 2010). A detailed didactic example is given to illustrate different steps of our algorithm.


Multi-objective Programming Stochastic Programming   2-levels recourse model Efficient solutions. 

Mathematics Subject Classification (2000)

90C29 90C26 90C10 


  1. Abbas M, Chaabane D (2006) Optimizing a linear function over an integer efficient set. Eur J Oper Res 174:1140–1161CrossRefGoogle Scholar
  2. Abbas M, Bellahcene F (2006) Cutting plane method for multiple objective stochastic integer linear programming. Eur J Oper Res 168:967–984CrossRefGoogle Scholar
  3. Ben Abdelaziz F, Masri H (2010) A compromise solution for the multiobjective stochastic linear programming under partial uncertainty. Eur J Oper Res 202:55–59CrossRefGoogle Scholar
  4. Ben Abdelaziz F, Lang P, Nadeau R (1999) Dominance and efficiency in multicriteria decision under uncertainty. Theory Decis. 47(3):191–211CrossRefGoogle Scholar
  5. Chaabane D, Pirlot M (2010) A method for optimizing over the integer efficient set. J Ind Manag Optim 6(4):811–823CrossRefGoogle Scholar
  6. Caballero R, Cerda E, Muñoz MM, Rey L (2004) Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems. Eur J Oper Res 158:633–648CrossRefGoogle Scholar
  7. Ecker JG, Song HG (1994) Optimizing a linear function over an efficient set. J Optim Theory Appl 83(3):541–563CrossRefGoogle Scholar
  8. Goicoechea A, Dukstein L, Bulfin RL (1967) Multiobjective stochastic programming the PROTRADE-method. Operation Research Society of America, San FranciscoGoogle Scholar
  9. Guyen NC (1992) An algorithm for optimizing a linear function over the integer efficient set. Konrad-Zuse-Zentrum fur Informationstechnik, BerlinGoogle Scholar
  10. Kall P (1976) Stochastic linear programming. Springer, BerlinCrossRefGoogle Scholar
  11. Kall P, Mayer J (2005) Stochastic linear programming models, theory, and computation. Kluwer, SpringerGoogle Scholar
  12. Kall P, Wallace SW (1994) Stochastic Programming. Willey Interscience Series in Systems and Optimization. Willey, New York.Google Scholar
  13. Steuer RE (1994) Random problem generation and the computation of efficient extreme points in multiple objective linear programming. Comput Optim Appl 3:333–347CrossRefGoogle Scholar
  14. Sylva J, Crema A (2007) A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs. Eur J Oper Res 180:1011–1027CrossRefGoogle Scholar
  15. Teghem J, Kunsch P (1986) A survey of techniques to determine the efficient solutions to multi-objective integer linear programming. Asia Pac J Oper Res 3:95–108Google Scholar
  16. Teghem J (1990) Strange-Momix: an interactive method for mixed integer linear programming. In: Slowinski R, Teghem J (eds) Stochastic VerKall-Mayersus fuzzy apprroaches to multiobjective mathematical programming under uncertainty. Kluwer, Dordrecht, pp 101–115Google Scholar
  17. Urli B, Nadeau R (1990) Multiobjective stochastic linear programming with incomplete information: a general methodology, In: Slowinski R, Teghem J (eds). Kluwer Academic Publisher, Dordrecht, pp 131–161Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of Mathematics, Operations Research DepartmentUSTHBAlgiersAlgeria

Personalised recommendations