Computational Management Science

, Volume 8, Issue 1–2, pp 181–199 | Cite as

Shape-based scenario generation using copulas

  • Michal KautEmail author
  • Stein W. Wallace
Original Paper


The purpose of this article is to show how the multivariate structure (the “shape” of the distribution) can be separated from the marginal distributions when generating scenarios. To do this we use the copula. As a result, we can define combined approaches that capture shape with one method and handle margins with another. In some cases the combined approach is exact, in other cases, the result is an approximation. This new approach is particularly useful if the shape is somewhat peculiar, and substantially different from the standard normal elliptic shape. But it can also be used to obtain the shape of the normal but with margins from different distribution families, or normal margins with for example tail dependence in the multivariate structure. We provide an example from portfolio management. Only one-period problems are discussed.


Stochastic programming Scenario generation Copulas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adcock CJ (2002) Asset pricing and portfolio selection based on the multivariate skew-student distribution. In: Non-linear Asset Pricing Workshop, ParisGoogle Scholar
  2. Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J R Stat Soc Ser B (Stat Methodol) 65: 367–389CrossRefGoogle Scholar
  3. Bauwens L, Laurent S (2005) A new class of multivariate skew densities, with application to GARCH models. J Bus Econ Stat 23(3):346–354. Available at SSRN: Google Scholar
  4. Bayraksan G, Morton DP (2006) Assessing solution quality in stochastic programs. Math Program 108(2–3): 495–514CrossRefGoogle Scholar
  5. Bouyé E, Durrleman V, Nikeghbali A, Riboulet G, Roncalli T (2000) Copulas for finance: a reading guide and some applications. Working paper, Crédit Lyonnais, Paris. Available at SSRN:
  6. Chiralaksanakul A, Morton DP (2004) Assessing policy quality in multi-stage stochastic programs. Stochastic Programming E-Print Series.
  7. Clemen RT, Reilly T (1999) Correlations and copulas for decision and risk analysis. Manage Sci 45(2): 208–224CrossRefGoogle Scholar
  8. Demarta S, McNeil AJ (2005) The t copula and related copulas. Int Stat Rev 73(1): 111–129CrossRefGoogle Scholar
  9. Dupačová J, Consigli G, Wallace SW (2000) Scenarios for multistage stochastic programs. Ann Oper Res 100: 25–53 ISSN 0254-5330CrossRefGoogle Scholar
  10. Dupačová J, Gröwe-Kuska N, Römisch W (2003) Scenario reduction in stochastic programming. Math Program 95(3): 493–511CrossRefGoogle Scholar
  11. Eaton JW (2006) GNU Octave Manual. Free Software Foundation, IncGoogle Scholar
  12. Embrechts P, Lindskog F, Mcneil A (2003) Modelling dependence with copulas and applications to risk management. In: Rachev ST (ed) Handbook of heavy tailed distributions in finance, handbooks in finance, chapter 8. Elsevier, pp 329–384Google Scholar
  13. Fleishman AI (1978) A method for simulating nonnormal distributions. Psychometrika 43: 521–532CrossRefGoogle Scholar
  14. Heinrich J (2004) A guide to the pearson type IV distribution. Technical Report Memo 6820, The Collider Detector at Fermilab, Fermilab, Batavia. Available at
  15. Heitsch H, Römisch W (2003) Scenario reduction algorithms in stochastic programming. Comput Optim Appl 24(2–3): 187–206CrossRefGoogle Scholar
  16. Heitsch H, Römisch W (2009) Scenario tree modelling for multistage stochastic programs. Math Program 118(2): 371–406. doi: 10.1007/s10107-007-0197-2 CrossRefGoogle Scholar
  17. Heitsch H, Römisch W, Strugarek C (2006) Stability of multistage stochastic programs. SIAM J Optim 17(2): 511–525CrossRefGoogle Scholar
  18. Heitsch H, Römisch W (2009) Scenario tree reduction for multistage stochastic programs. Comput Manage Sci 6(2): 117–133. doi: 10.1007/s10287-008-0087-y CrossRefGoogle Scholar
  19. Høyland K, Wallace SW (2001) Generating scenario trees for multistage decision problems. Manage Sci 47(2): 295–307CrossRefGoogle Scholar
  20. Høyland K, Michal K, Wallace SW (2003) A heuristic for moment-matching scenario generation. Comput Optim Appl 24(2–3): 169–185 ISSN 0926-6003CrossRefGoogle Scholar
  21. Hu L (2006) Dependence patterns across financial markets: a mixed copula approach. Appl Finan Econ 16(10): 717–729CrossRefGoogle Scholar
  22. Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall, LondonGoogle Scholar
  23. Jondeau E, Rockinger M (2003) Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements. J Econ Dynam Control 27(10): 1699–1737. ISSN 0165-1889. doi: 10.1016/S0165-1889(02)00079-9 CrossRefGoogle Scholar
  24. Jones MC (2001) Multivariate t and beta distributions associated with the multivariate f distribution. Metrika 54: 215–231CrossRefGoogle Scholar
  25. Kaut M, Wallace SW (2007) Evaluation of scenario-generation methods for stochastic programming. Pac J Optim 3(2): 257–271Google Scholar
  26. Kaut M, Wallace SW, Vladimirou H, Zenios S (2007) Stability analysis of portfolio management with conditional value-at-risk. Quant Finance 7(4): 397–409. doi: 10.1080/14697680701483222 CrossRefGoogle Scholar
  27. Linderoth JT, Shapiro A, Wright SJ (2006) The empirical behavior of sampling methods for stochastic programming. Ann Oper Res 142(1): 215–241CrossRefGoogle Scholar
  28. Longin F, Solnik B (2001) Extreme correlation of international equity markets. J Finance 56(2): 649–676CrossRefGoogle Scholar
  29. Makhorin A (2006a) GNU Linear Programming Kit—Reference Manual, Version 4.9. Free Software Foundation, IncGoogle Scholar
  30. Makhorin A (2006b) GNU Linear Programming Kit—Modeling Language GNU MathProg, Version 4.9. Free Software Foundation, IncGoogle Scholar
  31. MathWorks (2006) Statistics Toolbox For Use with MATLAB®—User’s Guide. The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760-2098Google Scholar
  32. MSCI Morgan Stanley Capital International Inc (2006).
  33. Nelsen RB (1998) An introduction to copulas. Springer, New YorkGoogle Scholar
  34. Patton A (2002) Skewness, asymmetric dependence, and portfolios. In: PhD Thesis, chapter 3. Department of Economics, University of California, San DiegoGoogle Scholar
  35. Patton AJ (2004) On the out-of-sample importance of skewness and asymmetric dependence for asset allocation. J Finan Econom 2(1): 130–168CrossRefGoogle Scholar
  36. Pflug GC (2001) Scenario tree generation for multiperiod financial optimization by optimal discretization. Math Program 89(2): 251–271CrossRefGoogle Scholar
  37. Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2(3): 21–41Google Scholar
  38. Romano C (2002) Calibrating and simulating copula functions: an application to the italian stock market. working paper 12. Centro Interdipartimale sul Diritto e l’Economia dei MercatiGoogle Scholar
  39. Rosenberg JV (2003) Non-parametric pricing of multivariate contingent claims. J Deriv 10(3): 9–26CrossRefGoogle Scholar
  40. Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 8: 229–231Google Scholar
  41. Sklar A (1996) Random variables, distribution functions, and copulas—a personal look backward and forward. In: Rüschendorff L, Schweizer B, Taylor M (eds) Distributions with fixed marginals and related topics. Institute of Mathematical Statistics, Hayward, pp 1–14CrossRefGoogle Scholar
  42. Uryasev S (2000) Conditional value-at-risk: optimization algorithms and applications. Finan Eng News 14: 1–5. URL
  43. Wallace, SW, Ziemba, WT (eds) (2005) Applications of stochastic programming. MPS-SIAM Series on Optimization, PhiladelphiaGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Lancaster University Management SchoolLancasterEngland

Personalised recommendations