Clinical Autonomic Research

, 16:61 | Cite as

The effects of exercise training on myocardial adrenergic and muscarinic receptors

  • Julie Barbier*
  • Sylvia Reland*
  • Nathalie Ville
  • Françoise Rannou-Bekono
  • Sara Wong
  • François Carré
SHORT COMMUNICATION

Abstract

We investigated the effects of exercise training on heart rate variability (HRV) and myocardial adrenergic and muscarinic receptors in rats. Exercise training induced a decrease in body mass while ventricular size remained unchanged, a development we considered as a relative cardiac hypertrophy. In addition, there was a reduction in the density of myocardial β1-adrenergic receptors. These structural changes were associated with functional adaptations, as illustrated by the increased response of the sinus node to sympathetic blockade.

Key words

heart rate variability myocardial receptors physiological cardiac hypertrophy exercise training 

References

  1. 1.
    Barbier J, Rannou-Bekono F, Marchais J, Berthon PM, Delamarche P, Carré F (2004) Effect of training on β1, β2, β3 adrenergic and M2 muscarinic receptors in rat heart. Med Sci Sports Exer 36:949–54CrossRefGoogle Scholar
  2. 2.
    Barnard RJ, Corre K, Cho H (1976) Effect of training on the resting heart rate of rats. Eur J Appl Physiol 35:285–89CrossRefGoogle Scholar
  3. 3.
    Basset A, Blanc J, Messas E, Hagege A, Elghozi JL (2001) Renin-angiotensin system contribution to cardiac hypertrophy in experimental hyperthyroidism: an echocardiographic study. J Cardiovasc Pharmacol 37:163–72CrossRefPubMedGoogle Scholar
  4. 4.
    Böhm M, Dorner H, Htun P, Lensche H, Platt D, Erdmann E (1993) Effects of exercise on myocardial adenylate cyclase and Gia expression in senescence. Am J Physiol 264:H805–H814PubMedGoogle Scholar
  5. 5.
    Bolter CP, Hughson RL, Critz JP (1986) Intrinsic rate and cholinergic sensitivity of isolated atria from trained and sedentary rats. Proc Soc Exp Biol 144:364–67Google Scholar
  6. 6.
    Carré F, Maison-Blanche P, Ollivier L (1994) Heart rate variability in two models of cardiac hypertrophy in rats in relation to the new molecular phenotype. Am J Physiol 266:H1872–H1878PubMedGoogle Scholar
  7. 7.
    Davy KP, Miniclier NL, Taylor JA, Stevenson ET, Seals DR (1996) Elevated heart rate variability in physically active postmenopausal women: a cardioprotective effect? Am J Physiol 271:H455–H460PubMedGoogle Scholar
  8. 8.
    De Schryver C, Mertens-Stryhagen J (1972) Heart tissue acetylcholine in chronically exercised rats. Experientia 31:316–21CrossRefGoogle Scholar
  9. 9.
    Favret F, Henderson KK, Clancy RL, Richalet JP, Gonzalez NC (2001) Exercise training alters the effect of chronic hypoxia in myocardial adrenergic and muscarinic receptor number. J Appl Physiol 91:1283–288PubMedGoogle Scholar
  10. 10.
    Gallagher K, Raven P, Mitchell J (1999) Classification of sports and the athlete’s heart. In:Williams R (ed) The athlete and heart disease. Philadelphia: Lippincott Williams and Wilkins, pp 9–1Google Scholar
  11. 11.
    Gritzali F (1988) Towards a generalised scheme for QRS detection in ECG waveforms. Signal Processing 15:183–92CrossRefGoogle Scholar
  12. 12.
    Hardouin S, Mansier P, Bertin B, Dakhly T, Swynghedauw B, Moalic JM (1997) β-adrenergic and muscarinic receptor expressions are regulated in opposite ways during senescence in rat left ventricle. J Mol Cell Cardiol 29:309–19CrossRefPubMedGoogle Scholar
  13. 13.
    Huonker M, Halle M, Keul J (1996) Structural and functional adaptations of the cardiovascular system by training. Int J Sports Med 17:S164–S172CrossRefPubMedGoogle Scholar
  14. 14.
    Japundzic N, Grichois ML, Zitoun P, Laude D, Elghozi JL (1990) Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst 30:91–00CrossRefPubMedGoogle Scholar
  15. 15.
    Kobusiak-Prokowicz M, Negrusz-Kaweka M (2003) Heart rate variability in patients suffering from essential hypertension with different mapping of left ventricle. Pol Arch Med Wewn 109:349–57Google Scholar
  16. 16.
    Levy MN, Yang T, Wallick DW (1993) Assessment of beat to beat control of heart rate by the autonomic nervous system: molecular biology techniques are necessary, but not sufficient. Cardiovasc Electrophysiol 4:183–93CrossRefGoogle Scholar
  17. 17.
    Levy W, Cerqueira M, Harp G (1998) Effect of endurance training on heart rate variability at rest in healthy young and older men. Am J Cardiol 8:1236–241CrossRefGoogle Scholar
  18. 18.
    Mangin L, Swynghedauw B, Benis A, Thibault N, Lerebours G, Carré F (1998) Relationships between heart rate and heart rate variability: study in conscious rats. J Cardiovasc Pharmacol 32:601–07CrossRefPubMedGoogle Scholar
  19. 19.
    Mazzeo RS, Brooks GA, Horvath SM (1984) Effects of age on metabolic responses to endurance training in rats. J Appl Physiol 57:1369–374PubMedGoogle Scholar
  20. 20.
    Niess A, Roecker K, Mayer F, Heitkamp HC, Dickhuth HH (1996) Effect of combined parasympathetic and sympathetic blockade on left ventricular relaxation at rest and during exercise in trained and untrained men. Int J Sports Med 17:S180–S183CrossRefPubMedGoogle Scholar
  21. 21.
    Nylander E (1981) Effect of betaadrenergic receptor blockade on development of training-induced bradycardia in rats. Acta Physiol Scand 112:449–54CrossRefPubMedGoogle Scholar
  22. 22.
    Reland S, Ville N, Wong S, Gauvrit H, Kervio G, Carré F (2003) Exercise heart rate variability of older women in relation to level of physical activity. J Gerontol Biol Sci 58A:585–91Google Scholar
  23. 23.
    Rozec BJ, Noireaud JN, Trochu L, Gauthier C (2003) Place of β3-adrenoceptor subtypes in the regulation of the cardiovascular system. Cardiovasc Res 96:905–13Google Scholar
  24. 24.
    Safa-Tisseront V, Ponchon P, Laude D, Elghozi JL (1998) Contribution of the autonomic nervous system to blood pressure and heart rate variability changes in early experimental hyperthyroidism. Eur J Pharmacol 352:247–55CrossRefPubMedGoogle Scholar
  25. 25.
    Seals DR, Taylor JA, Ng AV, Esler MD (1994) Exercise and aging autonomic control of the circulation. Med Sci Sports Ex 5:568–76Google Scholar

Copyright information

© Steinkopff-Verlag 2006

Authors and Affiliations

  • Julie Barbier*
    • 1
    • 2
  • Sylvia Reland*
    • 2
    • 3
  • Nathalie Ville
    • 1
    • 2
    • 3
  • Françoise Rannou-Bekono
    • 1
    • 2
  • Sara Wong
    • 4
  • François Carré
    • 2
    • 3
  1. 1.Laboratory of Physiology and Biomechanics of Muscular ExerciseUFR-APS, University of Rennes 2Rennes CedexFrance
  2. 2.G. I. S. “Sciences of Movement”Rennes cedexFrance
  3. 3.EA 3194—Cardiovascular Research Group, Laboratory of Medical Physiology, Faculty of MedicineUniversity Rennes 1Rennes
  4. 4.Signal and Imagery Processing LaboratoryINSERM U 642, University Rennes 1RennesFrance

Personalised recommendations