Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network

  • Md Zahangir AlomEmail author
  • Chris Yakopcic
  • Mst. Shamima Nasrin
  • Tarek M. Taha
  • Vijayan K. Asari


The Deep Convolutional Neural Network (DCNN) is one of the most powerful and successful deep learning approaches. DCNNs have already provided superior performance in different modalities of medical imaging including breast cancer classification, segmentation, and detection. Breast cancer is one of the most common and dangerous cancers impacting women worldwide. In this paper, we have proposed a method for breast cancer classification with the Inception Recurrent Residual Convolutional Neural Network (IRRCNN) model. The IRRCNN is a powerful DCNN model that combines the strength of the Inception Network (Inception-v4), the Residual Network (ResNet), and the Recurrent Convolutional Neural Network (RCNN). The IRRCNN shows superior performance against equivalent Inception Networks, Residual Networks, and RCNNs for object recognition tasks. In this paper, the IRRCNN approach is applied for breast cancer classification on two publicly available datasets including BreakHis and Breast Cancer (BC) classification challenge 2015. The experimental results are compared against the existing machine learning and deep learning–based approaches with respect to image-based, patch-based, image-level, and patient-level classification. The IRRCNN model provides superior classification performance in terms of sensitivity, area under the curve (AUC), the ROC curve, and global accuracy compared to existing approaches for both datasets.


Deep learning DCNN IRRCNN Computational pathology Medical imaging Breast cancer recognition 



  1. 1.
    Loukas C, Kostopoulos S, Tanoglidi A, Glotsos D, Sfikas C, Cavouras D: Breast cancer characterization based on image classification of tissue sections visualized under low magnification. Computational and mathematical methods in medicine 2013 2013Google Scholar
  2. 2.
    Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410, 1991CrossRefGoogle Scholar
  3. 3.
    Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B: Histopathological image analysis: a review. IEEE Rev Biomed Eng 2:147–171, 2009CrossRefGoogle Scholar
  4. 4.
    McCann MT, Ozolek JA, Castro CA, Parvin B, Kovacevic J: Automated histology analysis: opportunities for signal processing. IEEE Signal Process Mag 32(1):78–87, 2015CrossRefGoogle Scholar
  5. 5.
    Peikari M, Gangeh MJ, Zubovits J, Clarke G, Martel AL: Triaging diagnostically relevant regions from pathology whole slides of breast cancer: a texture based approach. IEEE Trans Med Imaging 35(1):307–315, 2016CrossRefGoogle Scholar
  6. 6.
    Alom MZ, Taha TM, Yakopcic C, Westberg S, Hasan M, Van Esesn BC, Awwal AAS and Asari VK: The history began from AlexNet: a comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164, 2018Google Scholar
  7. 7.
    Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI: A survey on deep learning in medical image analysis. Med Image Anal 42:60–88, 2017CrossRefGoogle Scholar
  8. 8.
    Spanhol FA, Oliveira LS, Petitjean C, Heutte L: A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 63(7):1455–1462, 2016CrossRefGoogle Scholar
  9. 9.
    Kowal M, Filipczuk P, Obuchowicz A, Korbicz J, Monczak R: Computer-aided diagnosis of breast cancer based on fine needle biopsy microscopic images. Comput Biol Med 43(10):1563–1572, 2013CrossRefGoogle Scholar
  10. 10.
    George YM, Zayed HH, Roushdy MI, Elbagoury BM: Remote computer-aided breast cancer detection and diagnosis system based on cytological images. IEEE Syst J 8(3):949–964, 2014CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Zhang B, Coenen F, Wenjin L: Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles. Mach Vis Appl 24(7):1405–1420, 2013CrossRefGoogle Scholar
  12. 12.
    Veta M, Pluim JPW, Van Diest PJ, Viergever MA: Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 61(5):1400–1411, 2014CrossRefGoogle Scholar
  13. 13.
    Gupta V, Bhavsar A: Breast cancer histopathological image classification: is magnification important? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 17–24. 2017Google Scholar
  14. 14.
    Bayramoglu N, Kannala J, and Heikkilä J: Deep learning for magnification independent breast cancer histopathology image classification. In Pattern Recognition (ICPR), 2016 23rd International Conference on, pp. 2440–2445. IEEE, 2016Google Scholar
  15. 15.
    Spanhol FA, Oliveira LS, Petitjean C, Heutte L: Breast cancer histopathological image classification using convolutional neural networks. In Neural Networks (IJCNN), 2016 International Joint Conference on, pp. 2560–2567. IEEE, 2016Google Scholar
  16. 16.
    Spanhol FA, Oliveira LS, Cavalin PR, Petitjean C, Heutte L: Deep features for breast cancer histopathological image classification. In Systems, Man, and Cybernetics (SMC), 2017 IEEE International Conference on, pp. 1868–1873. IEEE, 2017Google Scholar
  17. 17.
    Araújo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, Polónia A, Campilho A: Classification of breast cancer histology images using convolutional neural networks. PloS one 12(6):e0177544, 2017CrossRefGoogle Scholar
  18. 18.
    Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S: Breast cancer multi-classification from histopathological images with structured deep learning model. Sci Rep 7(1):4172, 2017CrossRefGoogle Scholar
  19. 19.
    Kahya MA, Al-Hayani W, Algamal ZY: Classification of breast cancer histopathology images based on adaptive sparse support vector machine. J Appl Math Bioinform 7.1 (2017): 49Google Scholar
  20. 20.
    Alom MdZ, Hasan M, Yakopcic C, Taha TM, Asari VK: Improved inception-residual convolutional neural network for object recognition. arXiv preprint arXiv:1712.09888 2017Google Scholar
  21. 21.
    Alom MZ, Hasan M, Yakopcic C, Taha TM: Inception recurrent convolutional neural network for object recognition. arXiv preprint arXiv:1704.07709, 2017Google Scholar
  22. 22.
    Szegedy C, et al: Inception-v4, Inception-Resnet and the impact of residual connections on learning. arXiv preprint arXiv: 1602.07261 2016Google Scholar
  23. 23.
    He K et al: Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016Google Scholar
  24. 24.
    Liang M, Hu X: Recurrent convolutional neural network for object recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015Google Scholar
  25. 25.
    Ioffe S, Szegedy C: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv: 1502.03167, 2015Google Scholar
  26. 26.
    Lin M, Chen Q, Yan S: Network in network. arXiv preprint arXiv:1312.4400, 2013Google Scholar
  27. 27.
    Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016Google Scholar
  28. 28.
    Abadi M, et al: Tensorflow: a system for large-scale machine learning. OSDI. Vol. 16, 2016Google Scholar
  29. 29.
    Pego A, Aguiar P, Bioimaging 2015: 2015, Available from: Accessed May 2018
  30. 30.
    Cruz-Roa A et al: Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Medical Imaging 2014: Digital Pathology. Vol. 9041. International Society for Optics and Photonics, 2014Google Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2019

Authors and Affiliations

  • Md Zahangir Alom
    • 1
    Email author
  • Chris Yakopcic
    • 1
  • Mst. Shamima Nasrin
    • 1
  • Tarek M. Taha
    • 1
  • Vijayan K. Asari
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of DaytonDaytonUSA

Personalised recommendations