Advertisement

Journal of Digital Imaging

, Volume 32, Issue 2, pp 269–275 | Cite as

Radiomics in RayPlus: a Web-Based Tool for Texture Analysis in Medical Images

  • Rong Yuan
  • Shuyue Shi
  • Junhui Chen
  • Guanxun ChengEmail author
Article

Abstract

Radiomics has been shown to have considerable potential and value in quantifying the tumor phenotype and predicting the treatment response. In most scenarios, the commercial and open-source software programs are available for quantitative analysis in medical images to streamline radiomics research. However, at this stage, most of these programs are local applications and require users to have experience in programming and software engineering, which clinicians usually do not have. Therefore, in this article, a web-based tool was proposed to flexibly support radiomics research workflow tasks. Radiomics in RayPlus requires zero installation, is easy to maintain, and accessible anywhere via any PC or MAC with an Internet connection. The system provides functions including multimodality image import and viewing, ROI definition, feature extraction, and data sharing. As a web application, it appears an effective way to multi-institution and multi-department collaborative radiomics research and moreover, its transparency, flexibility, and portability can greatly accelerate the pace of clinical data analysis.

Keywords

Medical image Texture analysis Radiomics Software design Web technology 

Notes

Acknowledgments

We wish to express our gratitude to Dr. Ruiguang Zhang and Dr. Quan Chen from the Department of Radiology, Wuhan Union Hospital, Wuhan, China, for all the inspiring discussions. And thanks to Mrs. Feifei Liu for the user interface design.

Funding information

Dr. Rong Yuan acknowledges financial support from SZSM201612071.

References

  1. 1.
    Fass L: Imaging and cancer: A review. Molecular Oncology 2(2):115–152, 2008CrossRefGoogle Scholar
  2. 2.
    Kurland BF, Gerstner ER, Mountz JM, Schwartz LH, Ryan CW, Graham MM, Buatti JM, Fennessy FM, Eikman EA, Kumar V, Forster KM, Wahl RL, Lieberman FS: Promise and pitfalls of quantitative imaging in oncology clinical trials. Magnetic Resonance Imaging 30(9):1301–1312, 2012CrossRefGoogle Scholar
  3. 3.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). European Journal of Cancer 45(2):228–247, 2009CrossRefGoogle Scholar
  4. 4.
    Levy MA, Rubin DL: Current and future trends in imaging informatics for oncology. Cancer Journal (Sudbury, Mass.) 17(4):203, 2011CrossRefGoogle Scholar
  5. 5.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, Zegers CML, Gillies R, Boellard R, Dekker A, Aerts HJWL: Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer 48(4):441–446, 2012CrossRefGoogle Scholar
  6. 6.
    Hugo JWLA, Emmanuel RV, Ralph L et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications. 5:4006, 2014CrossRefGoogle Scholar
  7. 7.
    Yanqi H, Changhong L, He L et al.: Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. Journal of Clinical Oncology. 34(18):2157–2164, 2016CrossRefGoogle Scholar
  8. 8.
    Hui L, Yitan Z, Elizabeth SB et al.: MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays. Radiology. 281(2):382–391, 2016CrossRefGoogle Scholar
  9. 9.
    Ke N, Liming S, Qin C et al.: Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI. Clinical Cancer Research. 22(21):5256–5264, 2016CrossRefGoogle Scholar
  10. 10.
    Jacob A, Satish V, Mirabela R et al.: Radiomics analysis on FLT-PET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study. Translational Oncology. 9(2):155–162, 2016CrossRefGoogle Scholar
  11. 11.
    Szczypinski PM, Strzelecki M, Materka A et al.: MaZda—a software package for image texture analysis. Computer Methods and Programs in Biomedicine. 94(1):66–76, 2009CrossRefGoogle Scholar
  12. 12.
    Fang YHD, Lin CY, Shih MJ et al.: Development and evaluation of an open-source software package “CGITA” for quantifying tumor heterogeneity with molecular images. BioMed Research International.:248505, 2014Google Scholar
  13. 13.
    Deasy JO, Blanco AI, Clark VH: CERR: a computational environment for radiotherapy research. Medical Physics. 30(5):979–985, 2003CrossRefGoogle Scholar
  14. 14.
    Apte A, Wang Y, Deasy J: SU-E-I-66: Radiomics and Image Registration Updates for the Computational Environment for Radiotherapy Research (CERR). Medical Physics. 41:145–145, 2014CrossRefGoogle Scholar
  15. 15.
    Apte A, Veeraraghavan H, Oh J, Kijewski P, Deasy J: SU-E-J-253: The Radiomics Toolbox in the Computational Environment for Radiological Research (CERR). Medical Physics. 42:3324–3324, 2015CrossRefGoogle Scholar
  16. 16.
    Computational Imaging & Bioinformatics Lab - Harvard Medical School (2018) Slicer-Radiomics. http://www.radiomics.io/slicerradiomics.html Accessed 25 February 2018
  17. 17.
    Pieper S., Halle M., Kikinis R. 3D Slicer. Biomedical Imaging: Nano to Macro, 2004. IEEE International Symposium on IEEE. 632–635, 2004Google Scholar
  18. 18.
    Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE: IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Medical Physics. 42(3):1341–1353, 2015CrossRefGoogle Scholar
  19. 19.
    Fave X, Mackin D, Lee J et al.: Computational resources for radiomics. Translational Cancer Research. 5(4):340–348, 2016CrossRefGoogle Scholar
  20. 20.
    Yuan R, Luo M, Sun Z, Shi S, Xiao P, Xie Q: RayPlus: a Web-Based Platform for Medical Image Processing. Journal of Digital Imaging. 30(2):197–203, 2017CrossRefGoogle Scholar
  21. 21.
    Mildenberger P, Eichelberg M, Martin E: Introduction to the DICOM standard. European Radiology. 12(4):920–927, 2002CrossRefGoogle Scholar
  22. 22.
    Kumar V, Gu Y, Basu S et al.: Radiomics: the process and the challenges. Magnetic resonance imaging. 30(9):1234–1248, 2013CrossRefGoogle Scholar
  23. 23.
    Danielsson PE: Euclidean distance mapping. Computer Graphics and Image Processing. 14(3):227–248, 1980CrossRefGoogle Scholar
  24. 24.
    Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics. 9(1): 62–66, 197SGoogle Scholar
  25. 25.
    Huertas A, Medioni G: Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-8(5):651–664, 1986CrossRefGoogle Scholar
  26. 26.
    Xu Y, Weaver JB, Healy DM, Lu J: Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE Transactions on Image Processing. 3(6):747–758, 1994CrossRefGoogle Scholar
  27. 27.
    Weldon TP, Higgins WE, Dunn DF: Efficient Gabor filter design for texture segmentation. Pattern Recognition. 29(12):2005–2015, 1996CrossRefGoogle Scholar
  28. 28.
    Ganeshan B, Abaleke S, Young RCD, Chatwin CR, Miles KA: Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging. 10(1):137–143, 2010CrossRefGoogle Scholar
  29. 29.
    Haralick RM, Shanmugam K: Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics. SMC-3(6):610–621, 1973CrossRefGoogle Scholar
  30. 30.
    Thibault G, Fertil B, Navarro C et al.: Shape and texture indexes application to cell nuclei classification. International Journal of Pattern Recognition and Artificial Intelligence. 27(01):1357002, 2013CrossRefGoogle Scholar
  31. 31.
    Galloway MM: Texture classification using gray level run length. Computer Graphic Image Process 4(2):172–179, 1975CrossRefGoogle Scholar
  32. 32.
    Amadasun M, King R: Textural features corresponding to textural properties. IEEE Transactions on Systems, Man, and Cybernetics. 19(5):1264–1274, 1989CrossRefGoogle Scholar
  33. 33.
    Tang X: Texture information in run-length matrices. IEEE Transactions on Image Processing. 7(11):1602–1609, 1998CrossRefGoogle Scholar
  34. 34.
    Kitware Inc. (2018) The Visualization Toolkit (VTK). https://www.vtk.org/ Accessed 25 February 2018
  35. 35.
    Intel. (2018) Eigen. http://eigen.tuxfamily.org/ Accessed 25 February 2018

Copyright information

© Society for Imaging Informatics in Medicine 2018

Authors and Affiliations

  • Rong Yuan
    • 1
  • Shuyue Shi
    • 2
  • Junhui Chen
    • 1
  • Guanxun Cheng
    • 3
    Email author
  1. 1.Department of Minimally Invasive Intervention, Peking University Shenzhen HospitalShenzhen PKU-HKUST Medical CenterShenzhenChina
  2. 2.Ruijia Technology, Inc.WuhanChina
  3. 3.Department of Radiology, Peking University Shenzhen HospitalShenzhen PKU-HKUST Medical CenterShenzhenChina

Personalised recommendations