Advertisement

Journal of Digital Imaging

, Volume 32, Issue 1, pp 183–197 | Cite as

OIPAV: an Integrated Software System for Ophthalmic Image Processing, Analysis, and Visualization

  • Lichun Zhang
  • Dehui Xiang
  • Chao Jin
  • Fei Shi
  • Kai Yu
  • Xinjian ChenEmail author
Article

Abstract

Ophthalmic medical images, such as optical coherence tomography (OCT) images and color photo of fundus, provide valuable information for clinical diagnosis and treatment of ophthalmic diseases. In this paper, we introduce a software system specially oriented to ophthalmic images processing, analysis, and visualization (OIPAV) to assist users. OIPAV is a cross-platform system built on a set of powerful and widely used toolkit libraries. Based on the plugin mechanism, the system has an extensible framework. It provides rich functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis, and visualization. By using OIPAV, users can easily access to the ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images, and improve quantitative evaluations. With a satisfying function scalability and expandability, the software is applicable for both ophthalmic researchers and clinicians.

Keywords

Software system Ophthalmic image Image processing Image analysis Image visualization Computer aided diagnosis 

Notes

Funding Information

This work has been supported in part by the National Basic Research Program of China (973 Program) under Grant 2014CB748600 and in part by the National Natural Science Foundation of China (NSFC) under Grants 81371629, 61401293, 61401294, 81401451, and 81401472.

References

  1. 1.
    Rosset A, Spadola L, Ratib O: OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17(3):205–216, 2004PubMedCentralGoogle Scholar
  2. 2.
    Pieper S, Halle M, Kikinis R: 3D Slicer[C]. IEEE International Symposium on Biomedical Imaging: Nano To Macro. IEEE 1:632–635, 2004Google Scholar
  3. 3.
    Fabian N, Moreland K, Thompson D, et al: The ParaView Coprocessing Library: A scalable, general purpose in situ visualization library. Large Data Analysis and Visualization. IEEE: 89–96, 2011Google Scholar
  4. 4.
    Schroeder WJ, Avila LS, Hoffman W: Visualizing with VTK: A tutorial[J]. IEEE Comput Graph Appl 20(5):20–27, 2000Google Scholar
  5. 5.
    Schroeder WJ, Martin KM, Lorensen WE: The design and implementation of an object-oriented toolkit for 3D graphics and visualization. Conference on Visualization. IEEE Computer Society Press, 1996, 93-ffGoogle Scholar
  6. 6.
    Ibanez L, Schroeder WJ, Ng L et al.: The ITK Software Guide: The Insight Segmentation and Registration Toolkit[J]. Comput Stat Data Anal 21:231–256, 2003Google Scholar
  7. 7.
    Nolden M, Zelzer S, Seitel A et al.: The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development. Int J Comput Assist Radiol Surg 8(4):607, 2013Google Scholar
  8. 8.
    Wolf I, Vetter M, Wegner I, Nolden M et al.: The Medical Imaging Interaction Toolkit (MITK) – a toolkit facilitating the creation of interactive software by extending VTK and ITK. Proc SPIE 5367:16–27, 2004Google Scholar
  9. 9.
    Muehler K, Tietjen C, Ritter F et al.: The Medical Exploration Toolkit: An Efficient Support for Visual Computing in Surgical Planning and Training[J]. IEEE Trans Vis Comput Graph 16(1):133–146, 2010Google Scholar
  10. 10.
    Mildenberger P, Eichelberg M, Martin E: Introduction to the DICOM standard[J]. Eur Radiol 12(4):920, 2002Google Scholar
  11. 11.
    Shi F, Chen X, Zhao H, et al: Automated 3-D Retinal Layer Segmentation of Macular Optical Coherence Tomography Images. IEEE Trans Med Imaging Papers 34(2): 441–452Google Scholar
  12. 12.
    Chen X, Niemeijer M, Zhang L, et al: 3D Segmentation of Fluid-Associated Abnormalities in Retinal OCT: Probability Constrained Graph-Search-Graph-Cut. IEEE Trans Med Imaging Papers 31(8): 1521–1531Google Scholar
  13. 13.
    Sun Z, Chen H, Shi F, et al: An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images. Scientific Reports 6(298): 243–244Google Scholar
  14. 14.
    Wu B, Zhu W, Shi F, et al: Automatic detection of microaneurysms in retinal fundus images.[J]. Computerized Medical Imaging & Graphics the Official Journal of the Computerized Medical Imaging Society, 2016Google Scholar
  15. 15.
    Zhang L, Zhu W, Shi F, et al: Automated segmentation of intraretinal cystoid macular edema for retinal 3D OCT images with macular hole[C]// IEEE, International Symposium on Biomedical imaging. IEEE 1494–1497, 2015Google Scholar
  16. 16.
    Guo J, Zhu W, Shi F et al.: A Framework for Classification and Segmentation of Branch Retinal Artery Occlusion in SD-OCT.[J]. IEEE Trans Image Process 26(7):3518–3527, 2017Google Scholar
  17. 17.
    Zhu S, Fei S, Xiang D, et al: Choroid Neovascularization Growth Prediction with Treatment Based on Reaction-Diffusion Model in 3D OCT Images[J]. IEEE Journal of Biomedical & Health Informatics PP(99):1–1, 2017Google Scholar
  18. 18.
    Sun M, Zhang Z, Ma C, et al: Quantitative analysis of retinal layers on three-dimensional spectral-domain optical coherence tomography for pituitary adenoma[J]. Plos One in Press, 2017  https://doi.org/10.1371/journal.pone.0179532
  19. 19.
    Zhu W, Chen H, Zhao H et al.: Automatic Three-dimensional Detection of Photoreceptor Ellipsoid Zone Disruption Caused by Trauma in the OCT[J]. Sci Rep 6:25433, 2016PubMedCentralGoogle Scholar
  20. 20.
    Kopriva I, Shi F, Chen X: Enhanced low-rank + sparsity decomposition for speckle reduction in optical coherence tomography[J]. J Biomed Opt 21(7):76008, 2016Google Scholar
  21. 21.
    Shi F, Tian B, Zhu W et al.: Automated choroid segmentation in three-dimensional 1-μm wide-view OCT images with gradient and regional costs[J]. J Biomed Opt 21(12):126017, 2016Google Scholar
  22. 22.
    Chen X, Zhu W, Wang L, et al: Automated Detection of IS/OS Defect Regions in 3D OCT Images. ARVO 2014Google Scholar
  23. 23.
    Eichelberg M, Riesmeier J: Ten years of medical imaging standardization and prototypical implementation: the DICOM standard and the OFFIS DICOM toolkit (DCMTK)[J]. Proc SPIE Int Soc Opt Eng 5371:57–68, 2004Google Scholar
  24. 24.
    Toussaint N, Sermesant M, Fillard P: vtkinria3d: A VTK Extension for Spatiotemporal Data Synchronization, Visualization and Management. In Proc. of Workshop on Open Source and Open Data for MICCAI 2007Google Scholar
  25. 25.
    Blanchette J, Summerfield M: C++ GUI Programming with Qt 4[J] 45(6): 747–749, 2006Google Scholar
  26. 26.
    Martin KW, Hoffman B: Mastering CMake : A Cross-Platform Build System[M]. Kitware 2010Google Scholar
  27. 27.
    Loeliger J: Version Control with Git: Powerful Tools and Techniques for Collaborative Software Development[D]. O'Reilly Media, Inc 2012Google Scholar
  28. 28.
    Huang HK: PACS and Imaging Informatics: Basic Principles and Applications[M] 2005Google Scholar
  29. 29.
    Eibel R, Türk T, Kulinna C et al.: [Value of multiplanar reformations (MPR)in multi-slice spiral CT of the lung][J]. Rofo 173(1):57–64, 2001Google Scholar
  30. 30.
    Levoy M: Display of surfaces from volume data[J]. IEEE Comput Graph Appl 20(3):29–37, 1988Google Scholar
  31. 31.
    Cabral B: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware[C]. Symp Onvisualization DBLP 91–98, 1995Google Scholar
  32. 32.
    Lorensen WE, Cline HE: Marching cubes: A high resolution 3D surface construction algorithm[C]//ACM siggraph computer graphics. ACM, 21(4):163–169, 1987Google Scholar
  33. 33.
    Gao E, Chen B, Yang J et al.: Comparison of Retinal Thickness Measurements between the Topcon Algorithm and a Graph-Based Algorithm in Normal and Glaucoma Eyes[J]. Plos One 10(6):e0128925, 2015PubMedCentralGoogle Scholar
  34. 34.
    Hood DC, Anderson SC, Wall M, Kardon RH: Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci 48(8):3662–3668, 2007Google Scholar
  35. 35.
    Chen H, Chen X, Qiu Z et al.: Quantitative analysis of retinal layers' optical intensities on 3D optical coherence tomography for central retinal artery occlusion[J]. Sci Rep 5(10):9269, 2015PubMedCentralGoogle Scholar
  36. 36.
    Chen B, Gao E, Chen H et al.: Profile and Determinants of Retinal Optical Intensity in Normal Eyes with Spectral Domain Optical Coherence Tomography[J]. Plos One 11(2):e0148183, 2016PubMedCentralGoogle Scholar
  37. 37.
    Gao W et al.: Investigation of changes in thickness and reflectivity from layered retinal structures of healthy and diabetic eyes with optical coherence tomography. J Biomed Sci Eng 4:657–665, 2011Google Scholar
  38. 38.
    Belghith A, Bowd C, Medeiros FA, et al: Automated segmentation of anterior lamina cribrosa surface: How the lamina cribrosa responds to intraocular pressure change in glaucoma eyes[C]// IEEE, International Symposium on Biomedical Imaging. IEEE 222–225, 2015Google Scholar
  39. 39.
    Nadler Z, Wang B, Wollstein G et al.: Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes.[J]. Biomed Opt Express 4(11):2596–2608, 2013PubMedCentralGoogle Scholar
  40. 40.
    Kwatra V, Essa I, Turk G, et al: Graphcut textures: image and video synthesis using graph cuts[C]// ACM SIGGRAPH. ACM 277–286, 2003Google Scholar
  41. 41.
    Williams CKI: Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[J]. IEEE Trans Neural Netw 16(3):781–781, 2005Google Scholar
  42. 42.
    Freund Y: Experiment With a New Boosting Algorithm[C]. Thirteenth Int Conf Mach Learn 148–156, 1996Google Scholar
  43. 43.
    Liaw A, Wiener M: Classification and Regression by randomForest[J]. R News 23(23), 2002Google Scholar
  44. 44.
    Gamma E, Helm R, Johnson R, et al: Design patterns: elements of reusable object-oriented software[J] 49(2):241–276, 1995Google Scholar
  45. 45.
    Kitware: The VTK user's guide[J]. 2010Google Scholar
  46. 46.
    Van GB, Schaefer-Prokop CM, Prokop M: Computer-aided diagnosis: how to move from the laboratory to the clinic[J]. Radiology 261(3):719, 2011Google Scholar
  47. 47.
    Conway RW, Schneider FB: User Recovery and Reversal in Interactive Systems[M]. Cornell University 1981Google Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2018

Authors and Affiliations

  • Lichun Zhang
    • 1
  • Dehui Xiang
    • 1
  • Chao Jin
    • 1
  • Fei Shi
    • 1
  • Kai Yu
    • 1
  • Xinjian Chen
    • 1
    Email author
  1. 1.School of Electronics and Information EngineeringSoochow UniversityJiangsu ProvinceChina

Personalised recommendations