Journal of Digital Imaging

, Volume 31, Issue 4, pp 403–414 | Cite as

Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images

  • Sebastian EchegarayEmail author
  • Shaimaa Bakr
  • Daniel L. Rubin
  • Sandy Napel


The aim of this study was to develop an open-source, modular, locally run or server-based system for 3D radiomics feature computation that can be used on any computer system and included in existing workflows for understanding associations and building predictive models between image features and clinical data, such as survival. The QIFE exploits various levels of parallelization for use on multiprocessor systems. It consists of a managing framework and four stages: input, pre-processing, feature computation, and output. Each stage contains one or more swappable components, allowing run-time customization. We benchmarked the engine using various levels of parallelization on a cohort of CT scans presenting 108 lung tumors. Two versions of the QIFE have been released: (1) the open-source MATLAB code posted to Github, (2) a compiled version loaded in a Docker container, posted to DockerHub, which can be easily deployed on any computer. The QIFE processed 108 objects (tumors) in 2:12 (h/mm) using 1 core, and 1:04 (h/mm) hours using four cores with object-level parallelization. We developed the Quantitative Image Feature Engine (QIFE), an open-source feature-extraction framework that focuses on modularity, standards, parallelism, provenance, and integration. Researchers can easily integrate it with their existing segmentation and imaging workflows by creating input and output components that implement their existing interfaces. Computational efficiency can be improved by parallelizing execution at the cost of memory usage. Different parallelization levels provide different trade-offs, and the optimal setting will depend on the size and composition of the dataset to be processed.


3D Image features Feature extraction Quantitative imaging Radiomics 



This research was funded in part by the following grants from the National Institutes of Health: R01 CA160251, U24 CA180927, U01 CA187947, and U01-CA190214.


This work was supported by the National Institutes of Health Grants R01 CA160251, U01 CA187947, U01-CA190214, and U24 CA180927.

Compliance with Ethical Standards

Conflict of interest

Dr. Napel is a consultant for Carestream, Inc. and is on the scientific advisory boards of Echo Pixel, Inc., Fovia, Inc., and RadLogics, Inc.


  1. 1.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, Zegers CML, Gillies R, Boellard R, Dekker A et al.: Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446, 2012CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aerts HJWL, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P, Cavalho S, Bussink J et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006, 2014CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJWL, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ et al.: Radiomics: The process and the challenges. Magn Reson Imaging [Internet] 30(9):1234–1248, 2012. CrossRefGoogle Scholar
  4. 4.
    Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RTH, Hermann G, Lambin P, Haibe-Kains B, Mak RH, Aerts HJWL: CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol [Internet] 114(3):345–350, 2015. CrossRefGoogle Scholar
  5. 5.
    Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, Mitra S, Shankar BU, Kikinis R, Haibe-Kains B, Lambin P, Aerts HJWL: Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9(7):1–8, 2014CrossRefGoogle Scholar
  6. 6.
    Gatenby RA, Grove O, Gillies RJ: Quantitative imaging in cancer evolution and ecology. Radiology [Internet] 269(1):8–15, 2013 Available from: CrossRefGoogle Scholar
  7. 7.
    Leijenaar RTH, Carvalho S, Velazquez ER, van Elmpt WJC, Parmar C, Hoekstra OS, Hoekstra CJ, Boellaard R, Dekker A, Gillies RJ, Aerts HJWL, Lambin P: Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability. Acta Oncol (Madr) [Internet] 52(7):1391–1397, 2013 Available from: CrossRefGoogle Scholar
  8. 8.
    Machine Learning | Microsoft Azure [Internet]. Available from:
  9. 9.
    Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee EA, Tao J, Zhao Y: Scientific workflow management and the Kepler system. Concurr Comput Pract Exp 18(10):1039–1065, 2006CrossRefGoogle Scholar
  10. 10.
    Parker SG, Johnson CR: SCIRun: A Scientific Programming Environment for Computational Steering [Internet]. In: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing. New York: ACM, 1995. Available from:
  11. 11.
    Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P, Oinn T: Taverna: A tool for building and running workflows of services. Nucleic Acids Res 34(WEB. SERV. ISS):729–732, 2006CrossRefGoogle Scholar
  12. 12.
    Taylor I, Shields M, Wang I, Harrison A: The triana workflow environment: Architecture and applications. Work e-Science Sci Work Grids:320–339, 2007Google Scholar
  13. 13.
    Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE: IBEX: An open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys [Internet] 42:1341–1353, 2015 Available from: CrossRefGoogle Scholar
  14. 14.
    van Griethuysen J, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan R, Fillion-Robin JC, Pieper S, Aerts HJWL: Computational Radiomics System to Decode the Radiographic Phenotype. Accepted Cancer Res 2017.
  15. 15.
    Boettiger C: An introduction to Docker for reproducible research. ACM SIGOPS Oper Syst Rev [Internet] 49(1):71–79, 2015 Available from: CrossRefGoogle Scholar
  16. 16.
    Ince DC, Hatton L, Graham-Cumming J: The case for open computer programs. Nature [Internet] 482(7386):485–488, 2012 Available from: CrossRefGoogle Scholar
  17. 17.
    Bitzer J, Schröder PJH: Bug-fixing and code-writing: The private provision of open source software. Inf Econ Policy 17(3):389–406, 2005CrossRefGoogle Scholar
  18. 18.
    Aberdour M: Achieving quality in open source software. IEEE Softw [Internet] (September):58–64, 2007 Available from:
  19. 19.
    Simmhan YL, Plale B, Gannon D: A survey of data provenance in e-science [internet]. SIGMOD Rec. 34(3):31–36, 2005 Available from:, CrossRefGoogle Scholar
  20. 20.
    Davidson SB, Freire J: Provenance and scientific workflows. Proc 2008 ACM SIGMOD Int Conf Manag data - SIGMOD ‘08 [Internet], 2008, p 1345. Available from:
  21. 21.
    Mildenberger P, Eichelberg M, Martin E: Introduction to the DICOM standard. Eur Radiol 12(4):920–927, 2002CrossRefPubMedGoogle Scholar
  22. 22.
    DICOM Standards Committee WG 17 (3D). Supplement 111: Segmentation Storage SOP Class. In: Digital Imaging and Communications in Medicine (DICOM). Rosslyn, Virginia, 2006, p 22209Google Scholar
  23. 23.
    Liu B, Zhu M, Zhang Z, Yin C, Liu Z, Gu J: Medical image conversion with DICOM. Can Conf Electr Comput Eng:36–39, 2007Google Scholar
  24. 24.
    Riesmeier J, Eichelberg M, Jensch P: An approach to DICOM image display handling the full flexibility of the standard’s specification. Med Imaging 1999 Image Disp 3658(February):363–9, 1999Google Scholar
  25. 25.
    Jonker PP: Morphological operations on 3D and 4D images: From shape primitive detection to skeletonization. In: Lecture Notes in Computer Science. 2000, pp 371–91Google Scholar
  26. 26.
    Norris N: General means and statistical theory. Am Stat [Internet] 30(1):8–12, 1976 Available from: Google Scholar
  27. 27.
    Mathworks. isosurface [Internet]. Matlab Ref. [cited 2016 Oct 19]. Available from:
  28. 28.
    reducepatch [Internet]. Mathworks MATLAB 2016a Doc. Available from:
  29. 29.
    Han J, Moraga C: The influence of the sigmoid function parameters on the speed of backpropagation learning. From Nat to Artif Neural Comput [Internet] 930:195–201, 1995. doi:
  30. 30.
    Xu J, Napel S, Greenspan H, Beaulieu CF, Agrawal N, Rubin D: Quantifying the margin sharpness of lesions on radiological images for content-based image retrieval. Med Phys 39(9):5405–5418, 2012CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    nlinfit [Internet]. Mathworks MATLAB 2016a Doc.2016. Available from:
  32. 32.
    Degarmo EP, Black J, Kohser RA: Materials and processes in manufacturing, 9th edition. Hoboken: Wiley, 2003Google Scholar
  33. 33.
    Definition and Designation of Surface Roughness. JIS B 0601. Japanese Industrial Standard, 1982Google Scholar
  34. 34.
    Surface Texture Symbols [Internet]. The American Society of Mechanical Engineers, 1996. Available from:
  35. 35.
    Wadell H: Volume, shape, and roundness of quartz particles. J Geol [Internet] 43(3):250–280, 1935 Available from: CrossRefGoogle Scholar
  36. 36.
    Haralick RMM, Shanmugam K, Dinstein IH: Textural Features for Image Classification. IEEE Trans Syst Man Cybern [Internet] [cited 2010 Nov 6];SMC-3(6):610–21, 1973. Available from:
  37. 37.
    Kong TY, Roscoe AW, Rosenfeld A: Concepts of digital topology. Topol Appl [Internet] 46(3):219–262, 1992 Available from: CrossRefGoogle Scholar
  38. 38.
    Shafranovich, Y.: Common Format and MIME Type for Comma-Separated Values (CSV) File, RFC 4180, October 2005. Accessed 2017-05-01
  39. 39. The BSD 2-Clause License [Internet]. Licenses 2016.Available from:
  40. 40.
    Echegaray S, Nair V, Kadoch M, Leung A, Rubin D, Gevaert O, Napel S: A rapid segmentation-insensitive “digital biopsy” method for Radiomic feature extraction: Method and pilot study using CT images of non–small cell lung cancer. Tomography [Internet] 2(4):283–294, 2016. Available from: CrossRefGoogle Scholar
  41. 41.
    Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, Napel S, Echegaray S, McNitt-Gray M, Lo P, Sieren JC, Uthoff J, Dilger SKN, Driscoll B, Yeung I, Goldgof D: Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features. Tomography 2(4):430–437, 2016.
  42. 42.
    Napel SA, Beaulieu CF, Rodriguez C, Cui J, Xu J, Gupta A, Korenblum D, Greenspan H, Ma Y, Rubin DL: Automated retrieval of CT images of liver lesions on the basis of image similarity: Method and preliminary results. Radiology [Internet] 256(1):243–252, 2010. CrossRefGoogle Scholar
  43. 43.
    Gevaert O, Mitchell LA, Achrol AS, Xu J, Echegaray S, Steinberg GK, Cheshier SH, Napel S, Zaharchuk G, Plevritis SK: Glioblastoma Multiforme: Exploratory Radiogenomic analysis by using quantitative image features. Radiology [Internet] 273(1):168–174, 2014. CrossRefGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2017

Authors and Affiliations

  1. 1.Department of RadiologyStanford University School of MedicineStanfordUSA
  2. 2.Department of Electrical EngineeringStanford UniversityStanfordUSA
  3. 3.Department of Medicine (Biomedical Informatics Research)Stanford University School of MedicineStanfordUSA

Personalised recommendations