Journal of Digital Imaging

, Volume 29, Issue 3, pp 365–379 | Cite as

Methods on Skull Stripping of MRI Head Scan Images—a Review

Article

Abstract

The high resolution magnetic resonance (MR) brain images contain some non-brain tissues such as skin, fat, muscle, neck, and eye balls compared to the functional images namely positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI) which usually contain relatively less non-brain tissues. The presence of these non-brain tissues is considered as a major obstacle for automatic brain image segmentation and analysis techniques. Therefore, quantitative morphometric studies of MR brain images often require a preliminary processing to isolate the brain from extra-cranial or non-brain tissues, commonly referred to as skull stripping. This paper describes the available methods on skull stripping and an exploratory review of recent literature on the existing skull stripping methods.

Keywords

Skull stripping Brain segmentation Brain extraction MRI brain Brain structure segmentation 

References

  1. 1.
    Haacke EM, Brown RW, Thompson MR, Venkatesan R: Magnetic resonance imaging, physical principles and sequence design. John Willey & Sons, New York, 1999Google Scholar
  2. 2.
    Quencer RM, Bradley WG: MR imaging of the brain: what constitutes the minimum acceptable capability? Am J Neuroradiol 22(8):1449–1450, 2001PubMedGoogle Scholar
  3. 3.
    Cheour M: Advantages of brain MRI, 2010, Available at: RadiologyInfo.orgGoogle Scholar
  4. 4.
    Schmid P: Segmentation of digitized dermatoscopic images by Two-dimensional colour clustering. IEEE Trans Med Imaging 18(2):164–171, 1999CrossRefPubMedGoogle Scholar
  5. 5.
    NLM-National Library of Medicine, (Rockville Pike, Bethesda U.S., 2011), Available online at: http://www.nlm.nih.gov
  6. 6.
    Gonzalez RC, Woods RE: Digital image processing, 3rd edition. Prentice Hall of India (P) Ltd, New Delhi, 2008Google Scholar
  7. 7.
    Pham DL, Xu C, Prince JL: Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–338, 2000CrossRefPubMedGoogle Scholar
  8. 8.
    Sharma N, Aggarwal LM: Automated medical image segmentation techniques. J Med Phys 35(1):3–14, 2010CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hizukuri A, Nakayama R, Nakako N, Kawanaka H, Takase H, Yamamoto K, Tsuruoka S: Computerized segmentation method for individual calcifications within clustered microcalcifications while maintaining their shapes on magnification mammograms. J Digit Imaging 25:377–386, 2012CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Younis A, Ibrahim M, Kabuka M, John N: An artificial immune-activated neural network applied to brain 3D MRI segmentation. J Digit Imaging 21(1):69–88, 2008CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Erickson BJ, Avula RTV: An algorithm for automatic segmentation and classification of magnetic resonance brain images. J Digit Imaging 11(2):74–82, 1998CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Handels H, Tolxdorff T: A new segmentation algorithm for knowledge acquisition in tissue- characterizing magnetic resonance imaging. J Digit Imaging 3(2):89–94, 1990CrossRefPubMedGoogle Scholar
  13. 13.
    Hogan RE, Mark KE, Choudhuri I, Wang L, Joshi S, Miller MI, Bucholz RD: Magnetic resonance imaging deformation-based segmentation of the hippocampus in patients with mesial temporal sclerosis and temporal lobe epilepsy. J Digit Imaging 13(1):217–218, 2000CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fennema-Notestine C, Ozyurt IB, Clark CP, Morris S, Bischoff-Grethe A, Bondi MW, Jernigan TL, Fischl B, Segonne F, Shattuck DW, Leahy RM, Rex DE, Toga AW, Zou KH, Brain M, Brown GG: Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction and slice location. Hum Brain Mapp 27(2):99–113, 2006CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Matsumoto S, Asato R, Konishi J: A fast Way to visualize the brain surface with volume rendering of MRI data. J Digit Imaging 12(4):185–190, 1999CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mahmood Q, Chodorowski A, Mehnert A, Gellermann J, Persson M, Unsupervised segmentation of head tissues from multi-modal MR images for EEG source localization J Digit Imaging, 2014Google Scholar
  17. 17.
    Hata Y, Kobashi S, Kondo K, Kitamura YT, Yanagida T: Transcranial ultrasonography system for visualizing skull and brain surface aided by fuzzy expert system. IEEE Trans Syst Man Cybern 35(6):1360–1373, 2005CrossRefGoogle Scholar
  18. 18.
    Klein A, Ghosh SS, Avants B, Yeo B, Fischl B, Ardekani B, Gee JC, Mann J, Parsey RV: Evaluation of volume-based and surface-based brain image registration methods. NeuroImage 51(1):214–220, 2010CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kalkers NF, Ameziane N, Bot JC, Minneboo A, Polman CH, Barkhof F: Longitudinal brain volume measurement in multiple sclerosis: rate of brain atrophy is independent of the disease subtype. Archit Neurol 58(10):1572–1576, 2002CrossRefGoogle Scholar
  20. 20.
    Wels M, Zheng Y, Huber M, Hornegger J, Comaniciu D: A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity Non-uniformity correction. Phys Med Biol 56(11):3269–3300, 2011CrossRefPubMedGoogle Scholar
  21. 21.
    Wang L, Chen Y, Pan X, Hong X, Xia D: Level set segmentation of brain magnetic resonance images based on local gaussian distribution fitting energy. J Neurosci Methods 188(2):316–325, 2010CrossRefPubMedGoogle Scholar
  22. 22.
    Thompson PM, Mega MS, Woods RP, Zoumalan CI, Lindshield CJ, Blanton RE, Moussai J, Holmes CJ, Cummings JL, Toga AW: Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cereb Cortex 11(1):1–16, 2001CrossRefPubMedGoogle Scholar
  23. 23.
    Tosun D, Rettmann ME, Naiman DQ, Resnick SM, Kraut MA, Prince JL: Cortical reconstruction using implicit surface evolution: accuracy and precision analysis. NeuroImage 29(3):838–852, 2006CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    MacDonald D, Kabani N, Avis D, Evans AC: Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. NeuroImage 12(3):340–356, 2000CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao L, Ruotsalainen U, Hirvonen J, Hietala J, Tohka J: Automatic cerebral and cerebellar hemisphere segmentation in 3D MRI: adaptive disconnection algorithm. Med Image Anal 14(3):360–372, 2010CrossRefPubMedGoogle Scholar
  26. 26.
    Zivadinov R, Bagnato F, Nasuelli D, Bastianello S, Bratina A, Locatelli L, Watts K, Finamore L, Grop A, Dwyer M, Catalan M, Clemenzi A, Millefiorini E, Bakshi R, Zorzon M: Short-term brain atrophy changes in relapsing-remitting multiple sclerosis. Neurol Sci 223(2):185–193, 2004CrossRefGoogle Scholar
  27. 27.
    Rusinek H, de Leon MJ, George AE, Stylopoulos LA, Chandra R, Smith G, Rand T, Mourino M, Kowalski H: Alzheimer disease: measuring loss of cerebral gray matter with MR imaging. Radiology 178(1):109–114, 1991CrossRefPubMedGoogle Scholar
  28. 28.
    Tanskanen P, Veijola JM, Piippo UK, Haapea M, Miettunen JA, Pyhtinen J, Bullmore ET, Jones PB, Isohanni MK: Hippocampus and amygdala volumes in schizophrenia and other psychoses in the northern Finland 1966 birth cohort. Schizophr Res 75(2-3):283–294, 2005CrossRefPubMedGoogle Scholar
  29. 29.
    Blanton RE, Levitt JG, Peterson JR, Fadale D, Sporty ML, Lee M, To D, Mormino EC, Thompson PM, McCracken JT, Toga AW: Gender differences in the left inferior frontal gyrus in normal children. NeuroImage 22(2):626–636, 2004CrossRefPubMedGoogle Scholar
  30. 30.
    Brummer ME, Mersereau RM, Eisner RL, Lewine RRJ, Caeslles V, Kimmel R, Sapiro G: Automatic detection of brain contours in MRI datasets. IEEE Trans Image Process 12(2):153–166, 1993CrossRefGoogle Scholar
  31. 31.
    Smith SM: Fast robust automated brain extraction. Hum Brain Mapp 17(3):143, 2002CrossRefPubMedGoogle Scholar
  32. 32.
    Zhuang AH, Valentino DJ, Toga AW: Skull stripping magnetic resonance images using a model-based level sets. NeuroImage 32(1):79–92, 2006CrossRefPubMedGoogle Scholar
  33. 33.
    Tsai C, Manjunath BS, Jagadeesan R: Automated segmentation of brain MR images. Pattern Recogn 28(12):1825–1837, 1995CrossRefGoogle Scholar
  34. 34.
    Sandor S, Leahy RM: Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Trans Med Imaging 16(1):41–54, 1997CrossRefPubMedGoogle Scholar
  35. 35.
    Lemieux G, Krakow KH, Woermann FG: Fast, automatic segmentation of the brain in T1-weighted volume magnetic resonance image data. Proc SPIE Med Imaging: Image Processing 3661:152–160, 1999CrossRefGoogle Scholar
  36. 36.
    Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5):856–876, 2001CrossRefPubMedGoogle Scholar
  37. 37.
    Shanthi KJ, Sasikumar M: Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques, Proc. International Conference on Intelligent and Advanced Systems, Kuala Lumpur 1:422-426,2007Google Scholar
  38. 38.
    Mikheev B, Nevsky G, Govindan S, Grossman R, Rusinek H: Fully automatic segmentation of the brain from T1-weighted MRI using bridge burner algorithm. J Magn Reson Imaging 27(6):1235–1241, 2008CrossRefPubMedGoogle Scholar
  39. 39.
    Park GJ, Lee C: Skull stripping based on region growing for magnetic resonance images. NeuroImage 47(4):1394–1407, 2009CrossRefPubMedGoogle Scholar
  40. 40.
    Gao J, Xie M: Skull stripping MR brain images using anisotropic diffusion filtering and morphological processing, Proc. International Symposium on Computer Network and Multimedia Technology, Wuhan 1:1-4,2009Google Scholar
  41. 41.
    Somasundaram K, Kalavathi P: Automatic skull stripping of magnetic resonance images (MRI) of human head scans using image contour. Image Processing, Allied Publisher, New Delhi, 2010, pp 147–151Google Scholar
  42. 42.
    Somasundaram K, Kalavathi P: A hybrid method for automatic skull stripping of magnetic resonance images (MRI) of human head scans. Proc. International Conference on Computing Communication and Networking Technologies (ICCCNT), Karur, Tamilnadu, 1-5, 2010Google Scholar
  43. 43.
    Somasundaram K, Kalaiselvi T: Fully automatic brain extraction algorithm for axial T2- weighted magnetic resonance images. Comput Biol Med 40(10):811–822, 2010CrossRefPubMedGoogle Scholar
  44. 44.
    Somasundaram K, Kalaiselvi T: Automatic brain extraction methods for T1 magnetic resonance images using region labeling and morphological operations. Comput Biol Med 41(8):2011Google Scholar
  45. 45.
    Carass A, Cuzzocreo J, Wheeler MB, Bazin PL, Resnick SM, Prince JL: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis. NeuroImage 56(4):1982–1992, 2011CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cox RW: AFNI: software for analysis and visualization of functional magnetic resonance Neuroimages. Comput Biomed Res 29(3):162–173, 1996CrossRefPubMedGoogle Scholar
  47. 47.
    Ward BD: 3dIntracranial: automatic segmentation of intracranial region. Technical Report, Biophysics Research Institute, Medical College of Wisconsin, UK, 1999Google Scholar
  48. 48.
    Huh S, Ketter TA, John KH, Lee C: Automated cerebrum segmentation from three- dimensional sagittal brain MR images. Comput Biol Med 32(5):311–328, 2002CrossRefPubMedGoogle Scholar
  49. 49.
    Dawant BM, Hartmann SL, Thirion JP, Maes F, Vandermeulen D, Demaerel P: Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations: part I. Methodology and validation on normal subjects. IEEE Trans Med Imaging 18(10):909–916, 1999CrossRefPubMedGoogle Scholar
  50. 50.
    Pham DL, Prince JL: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18(9):737–752, 1999CrossRefPubMedGoogle Scholar
  51. 51.
    Hahn HK, Peitgen HO: The Skull Stripping Problem in MRI Solved by Single 3D Watershed Transform, Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI). LNCS 2000:134–143, 1935Google Scholar
  52. 52.
    Grau V, Mewes AUJ, Alcaiz M, Kikinis R, Warfield SK: Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging 23(4):447–458, 2004CrossRefPubMedGoogle Scholar
  53. 53.
    Ashburner J, Friston KJ: Voxel based morphometry: the methods. NeuroImage 11(6):805–821, 2000CrossRefPubMedGoogle Scholar
  54. 54.
    Ashburner J, Friston KJ: Unified segmentation. NeuroImage 26(3):839–851, 2005CrossRefPubMedGoogle Scholar
  55. 55.
    Zu YS, Guang HY, Jing ZL: Automated histogram-based brain segmentation in T1- weighted three-dimensional magnetic resonance head images. NeuroImage 17(3):1587–1598, 2002CrossRefGoogle Scholar
  56. 56.
    Sadananthan S, Zheng W, Chee M, Zagorodnov V: Skull stripping using graph cuts. NeuroImage 49(1):225–239, 2010CrossRefPubMedGoogle Scholar
  57. 57.
    Somasundaram K, Kalavathi P: Skull stripping of MRI head scans based on 2D region growing, Proc. ICOM11 Tiruchirappalli, Tamil Nadu, 2011, pp 18–23Google Scholar
  58. 58.
    Somasundaram K, Kalavathi P: Brain segmentation in magnetic resonance human head scans using multi-seeded region growing. Imaging Sci J 62(5):273–284, 2014CrossRefGoogle Scholar
  59. 59.
    Kalavathi P: Computation of brain asymmetry in 2D brain images. Int J Sci Eng Res 5(7):1167–1171, 2014Google Scholar
  60. 60.
    Aboutanos GB, Nikanne J, Watkins N, Dawant BM: Model creation and deformation for the automatic segmentation of the brain in MR images. IEEE Trans Biomed Eng 46(11):1346–1356, 1999CrossRefPubMedGoogle Scholar
  61. 61.
    Zeng X, Staib LH, Schultz RT, Duncan JS: Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation. IEEE Trans Med Imaging 18(10):927–937, 1999CrossRefPubMedGoogle Scholar
  62. 62.
    Suri JS: Two-dimensional fast magnetic resonance brain segmentation. IEEE Eng Med Biol 20(4):84–95, 2001CrossRefGoogle Scholar
  63. 63.
    Baillard C, Hellier P, Barillot C: Segmentation of brain 3D MR images using level sets and dense registration. Med Image Anal 5(3):185–194, 2001CrossRefPubMedGoogle Scholar
  64. 64.
    Atkins MS, Siu K, Law B, Orchard JJ, Rosenbaum WL: Difficulties of T1 brain MRI segmentation techniques, medical imaging. Proc. SPIE 4684(1):1837–1844, 2001Google Scholar
  65. 65.
    Jenkinson M, Pechaud M, Smith S: BET2 - MR-based estimation of brain, skull and scalp surfaces. Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), Oxford, 2005Google Scholar
  66. 66.
    3dSkullStrip, a part of the AFNI (Analysis of Functional Neuro Images) package. available at http://afni.nimh.nih.gov
  67. 67.
    Lao Z, Shen D, Davatzikas C: Statistical shape model for automatic skull-stripping of brain images. Proc. IEEE International Symposium on Biomedical Imaging, Washington, D.C, 2002, pp 855–858Google Scholar
  68. 68.
    John C, Kevin W, Emma L, Chao C, Barbara P, Declan J: Statistical morphological skull stripping of adult and infant MRI data. Comput Biol Med 37(3):342–357, 2007CrossRefGoogle Scholar
  69. 69.
    Yunjie C, Jianwei Z, Shunfeng W: A new fast brain skull stripping method, biomedical engineering and informatics. Proc. 2nd International Conference on Biomedical Engineering and Informatics, BMEI09, Tianjin, 2009Google Scholar
  70. 70.
    Liu JX, Chen YS, Chen LF: Accurate and robust extraction of brain regions using a deformable model based on radial basis functions. J Neurosci Methods 183(2):255–266, 2009CrossRefPubMedGoogle Scholar
  71. 71.
    Merisaari H, Parkkola R, Alhoniemia E, Teras M, Lehtonend L, Haataja L, Lapinleimu H, Nevalainen OS: Gaussian mixture model-based segmentation of MR images taken from premature infant brains. J Neurosci Methods 182(1):110–122, 2009CrossRefPubMedGoogle Scholar
  72. 72.
    Tao X, Chang MC: A skull stripping method using deformable surface and tissue classification, medical imaging. Proc. SPIE 7:623–630, 2010Google Scholar
  73. 73.
    Somasundaram K, Kalavathi P: Skull stripping of MRI head scans based on chan-vese active contour model. Int J Knowl Manag e-learning 3(1):7–14, 2011Google Scholar
  74. 74.
    Hwang J, Han Y, Park H: Skull-stripping method for brain MRI using a 3D level Set with a speedup operator. J Magn Reson Imaging 34(2):445–456, 2011CrossRefPubMedGoogle Scholar
  75. 75.
    Zhang H, Liu J, Zhu Z, et al: An automated and dimple method for brain MR image extraction, BioMed Eng OnLine 10(81),2011Google Scholar
  76. 76.
    Somasundaram K, Kalavathi P: A novel skull stripping technique for T1-weighted MRI human head Scans, Proc. ICVGIP 1-8,2012Google Scholar
  77. 77.
    Galdames FJ, Jaillet F, Perez CA: An accurate skull stripping method based on simplex meshes and histogram analysis in magnetic resonance images. J Neurosci Methods 206(2):109–113, 2012CrossRefGoogle Scholar
  78. 78.
    Somasundaram K, Kalavathi P: Contour-based brain segmentation method for magnetic resonance imaging human head scans. J Comput Assist Tomogr 37(3):353–368, 2013CrossRefPubMedGoogle Scholar
  79. 79.
    Dale AM, Fischl B, Sereno MI: Cortical surface-based analysis I: segmentation and surface reconstruction. NeuroImage 9(2):179–194, 1999CrossRefPubMedGoogle Scholar
  80. 80.
    Wang Y, Nie J, Yap P-T, Shi F, Guo L, Shen D: Robust deformable-surface-based skull- stripping for large-scale studies, Proc. medical image computing and computer assisted intervention (MICCAI). LNCS 6893:635–642, 2011Google Scholar
  81. 81.
    Kobashi S, Moto FY, Ogawa MD, Ando K, Ishikura R, Kando SH, Katy Y: Fuzzy- ASM based automated skull stripping method from infantile brain MR images. Proc. IEEE Int Conf Granular Comput San Jose California 1:632–635, 2007Google Scholar
  82. 82.
    Mahapatra D: Skull stripping of neonatal brain MRI: using prior shape information with graph cuts. J Digit Imaging 25(6):802–814, 2012CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Leung KK, Barnes J, Modat M, Ridgway GR, Bartlett JW, Fox NC, Ourselin S: Brain MAPS: an automated, accurate and robust brain extraction technique using a template library. NeuroImage 55(3):1091–1108, 2011CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Eskildsen SF, Coupe P, Fonov V, Manjon JV, Leung KK, Guizard N, Wassef SN, Ostergaard LR, Collins DL: BEaST: brain extraction based on Non-local segmentation technique. NeuroImage 59(3):2362–2373, 2012CrossRefPubMedGoogle Scholar
  85. 85.
    Kapur T, Grimson WEL, Wells III, WM, Kikinis R: Segmentation of brain tissue from magnetic resonance images. Med Image Anal 1(2):109–127, 1996CrossRefPubMedGoogle Scholar
  86. 86.
    Atkins MS, Mackiewich B: Fully automatic segmentation of the brain in MRI. IEEE Transactions Med Imaging 17(1):98–107, 1998CrossRefGoogle Scholar
  87. 87.
    Abramoff MD, Magelhaes PJ, Ram SJ: Image processing with image. J Biophotonics International 11(7):36–42, 2004Google Scholar
  88. 88.
    Bauer S, Fejes T, Reyes M: A skull-stripping filter for ITK, Insight Journal, 2012. http://hdl.handle.net/10380/3353
  89. 89.
    Rehm K, Schaper K, Anderson J, Woods R, Stoltzner S, Rottenberg D: Putting our heads together: a consensus approach to brain/Non-brain segmentation in T1-weighted MR volumes. NeuroImage 22(3):1262–1270, 2004CrossRefPubMedGoogle Scholar
  90. 90.
    Woods RP, Grafton ST, Watson JDG, Sicotte NL, Mazziotta JC: Automated image registration: II intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22(1):153–165, 1998CrossRefPubMedGoogle Scholar
  91. 91.
    Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B: A hybrid approach to the skull stripping problem in MRI. NeuroImage 22(3):1060–1075, 2004CrossRefPubMedGoogle Scholar
  92. 92.
    Rex DE, Shattuck DW, Woods RP, Narr KL, Luders E, Rehm K, Stolzner SE, Rotten-berg DA, Toga AW: A meta-algorithm for brain extraction in MRI. NeuroImage 23(2):625–637, 2004CrossRefPubMedGoogle Scholar
  93. 93.
    Shi F, Wang L, Gilmore JH, Lin W, Shen D: Learning-based meta-algorithm for MRI brain extraction, Proc. medical image computing and computer assisted intervention (MICCAI). LNCS 6893:313–321, 2011Google Scholar
  94. 94.
    Huang A, Abugharbieh R, Tam R, Traboulsee A: MRI brain extraction with combined expectation maximization and geodesic active contours. Proc. IEEE Int Symp Signal Proc Inf Technol 107(1):107–111, 2006Google Scholar
  95. 95.
    Carass A, Cuzzocreo J, Wheeler MB, et al: A joint registration and segmentation approach to skull stripping, Proc. IEEE Symposium on Biomedical Imaging. 655-659,2007Google Scholar
  96. 96.
    Iglesias JE, Liu CY, Thompson PM, Tu Z: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans Med Imaging 30(9):1617–1634, 2011CrossRefPubMedGoogle Scholar
  97. 97.
    Lee JM, Yoon U, Nam SM, Kim JH, Kim IY, Kim SI: Evaluation of automated and semi-automated skull stripping algorithms using similarity index and segmentation error. Comput Biol Med 33(6):495–507, 2003CrossRefPubMedGoogle Scholar
  98. 98.
    Boesen K, Rehm L, Schaper K, Stoltzner S, Woods R, Luders E, Rottenberg D: Quan- titative comparison of four brain extraction algorithms. NeuroImage 22(3):1255–1261, 2004CrossRefPubMedGoogle Scholar
  99. 99.
    Hartley SW, Scher AI, Korf ESC, White LR, Launer LJ: Analysis and validation of automated skull stripping tools: a validation study based on 296 MR images from Honolulu Asia aging study. NeuroImage 30(4):1179–1186, 2006CrossRefPubMedGoogle Scholar
  100. 100.
    Shattuck DW, Prasad G, Mirza M, Narr KL, Toga AW: Online resource for validation of brain segmentation methods. NeuroImage 45(2):431–439, 2009CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Richard A: Biomedical imaging, visualization and analysis. John Wiley & Sons Inc, New York, USA, 2000Google Scholar
  102. 102.
    Yoon UC, Kim JS, Kim IY, Kim SI: Adaptive fuzzy C-means for improved classification as a preprocessing procedure of brain parcellation. J Digit Imaging 14(2):238–240, 2001CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Sled JG, Zijdenbos AP, Evans AC: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97, 1998CrossRefPubMedGoogle Scholar
  104. 104.
    Somasundaram K, Kalavathi P: Medical image denoising using Non-linear spatial mean filters for edge detection. Proc. Signal and Image Processing, New Delhi, 2012, pp 149–154Google Scholar
  105. 105.
    Somasundaram K, Kalavathi P: Analysis of imaging artifacts in MR brain images. Oriental J Comput Sci Technol 5(1):135–141, 2012Google Scholar
  106. 106.
    Somasundaram K, Kalavathi P: Medical image contrast enhancement based on gamma correction. Int J Knowl Manag e-learning 3(1):15–18, 2011Google Scholar
  107. 107.
    ANALYZE 12.0 – Visualization and analysis software for medical imaging. Available at : http://analyzedirect.com/analyze-12-0/
  108. 108.
    Speier W, Iglesias JE, El-Kara L, Tu Z, Arnold C: Robust skull stripping of clinical glioblastoma multiforme data, Proc. medical image computing and computer assisted intervention (MICCAI). LNCS 6893:659–666, 2011Google Scholar
  109. 109.
    Bauer S, Nolte L-P, Reyes M: Skull-stripping for tumor-bearing brain images. In Philippe Buchler and Stephen Ferguson, editors, Annual Meeting of the Swiss Society for Biomedical Engineering, page 2, Bern, April 2011. SSBEGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2015

Authors and Affiliations

  1. 1.Department of Computer Science and ApplicationsGandhigram Rural Institute - Deemed UniversityGandhigramIndia
  2. 2.Computational Imaging and VisAnalysis (CIVA) Lab, Department of Computer ScienceUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations