Journal of Digital Imaging

, Volume 29, Issue 2, pp 175–182 | Cite as

An Evaluation of Performance Characteristics of Primary Display Devices

  • Ernest U. EkpoEmail author
  • Mark F. McEntee


The aim of this study was to complete a full evaluation of the new EIZO RX850 liquid crystal display and compare it to two currently used medical displays in Australia (EIZO GS510 and Barco MDCG 5121). The American Association of Physicists in Medicine (AAPM) Task Group 18 Quality Control test pattern was used to assess the performance of three high-resolution primary medical displays: EIZO RX850, EIZO GS510, and Barco MDCG 5121. A Konica Minolta spectroradiometer (CS-2000) was used to assess luminance response, non-uniformity, veiling glare, and color uniformity. Qualitative evaluation of noise was also performed. Seven breast lesions were displayed on each monitor and photographed with a calibrated 5.5-MP Olympus E-1 digital SLR camera. ImageJ software was used to sample pixel information from each lesion and surrounding background to calculate their conspicuity index on each of the displays. All monitor fulfilled all AAPM acceptance criteria. The performance characteristics for EIZO RX850, Barco MDCG 5121, and EIZO GS510 respectively were as follows: maximum luminance (490, 500.5, and 413 cd/m2), minimum luminance (0.724, 1.170, and 0.92 cd/m2), contrast ratio (675:1, 428:1, 449:1), just-noticeable difference index (635, 622, 609), non-uniformity (20, 5.92, and 8.5 %), veiling glare (GR = 2465.6, 720.4, 1249.8), and color uniformity (Δuv′ = +0.003, +0.002, +0.002). All monitors demonstrated low noise levels. The conspicuity index (χ) of the lesions was slightly higher in the EIZO RX850 display. All medical displays fulfilled AAPM performance criteria, and performance characteristics of EIZO RX850 are equal to or better than those of the Barco MDCG 5121 and EIZO GS510 displays.


EIZO RX850 Barco MDCG 5121 EIZO GS510 Conspicuity index Monitor evaluation 



Barco MDCG5121






In-plane switching


Thin-film transistor


Thin-film transistor liquid crystal display


Computed tomography


Magnetic resonance




Digital radiography


Computed radiography


Nuclear medicine


Food and Drug Administration


American Association of Physicists in Medicine


Task Group 18


Maximum luminance


Minimum luminance


Luminance in the presence of ambient lighting


Luminance ratio


Contrast ratio


Just-noticeable difference


Glare ratio


Color uniformity

Lmin + Lamb

Minimum luminance in the presence of ambient lighting


Technical Standard for Electronic Practice of Medical Imaging



The authors of this research would like to thank Professor Patrick Brennan for providing the spectroradiometer and digital camera used for this study.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Benveniste MF, Rosado-de-Christenson ML, Sabloff BS, et al: Role of imaging in the diagnosis, staging, and treatment of thymoma. Radiographics 31(7):1847–61, 2011. discussion 1861-3CrossRefPubMedGoogle Scholar
  2. 2.
    Krupinski E, Roehrig H, Furukawa T: Influence of film and monitor display luminance on observer performance and visual search. Acad Radiol 6(7):411–8, 1999CrossRefPubMedGoogle Scholar
  3. 3.
    Krupinski EA, Roehrig H: Pulmonary nodule detection and visual search: P45 and P104 monochrome versus color monitor displays. Acad Radiol 9(6):638–45, 2002CrossRefPubMedGoogle Scholar
  4. 4.
    Ekpo EU, Hoban AC, McEntee MF: Optimisation of direct digital chest radiography using Cu filtration. Radiography 20(4):346–350, 2014CrossRefGoogle Scholar
  5. 5.
    Krupinski EA, Williams MB, Andriole K, et al: Digital radiography image quality: image processing and display. J Am Coll Radiol 4(6):389–400, 2007CrossRefPubMedGoogle Scholar
  6. 6.
    Samei E, Dobbins 3rd, JT, Lo JY, et al: A framework for optimising the radiographic technique in digital X-ray imaging. Radiat Prot Dosim 114:220–9, 2005CrossRefGoogle Scholar
  7. 7.
    Saunders RS, Samei E, Baker J, et al: Comparison of LCD and CRT displays based on efficacy for digital mammography. Acad Radiol 13(11):1317–26, 2006CrossRefPubMedGoogle Scholar
  8. 8.
    Krupinski EA, Roehrig H: The influence of a perceptually linearized display on observer performance and visual search. Acad Radiol 7(1):8–13, 2000CrossRefPubMedGoogle Scholar
  9. 9.
    Badano A, Gagne RM, Jennings RJ, et al: Noise in flat-panel displays with subpixel structure. Med Phys 31(4):715–23, 2004CrossRefPubMedGoogle Scholar
  10. 10.
    Lowe JM, Brennan PC, Evanoff MG, et al: Variations in performance of LCDs are still evident after DICOM gray-scale standard display calibration. AJR Am J Roentgenol 195(1):181–7, 2010CrossRefPubMedGoogle Scholar
  11. 11.
    Samei E, Badano A, Chakraborty D, et al: Assessment of display performance for medical imaging systems: executive summary of AAPM TG18 report. Med Phys 32(4):1205–25, 2005CrossRefPubMedGoogle Scholar
  12. 12.
    Fetterly KA, Blume HR, Flynn MJ, et al: Introduction to grayscale calibration and related aspects of medical imaging grade liquid crystal displays. J Digit Imaging 21(2):193–207, 2008CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kenneth S. Kump J.O., John French. Consistent image presentation implemented using DICOM grayscale standard display function. In: Medical Imaging. 2000. San Diego, CA: Proc. SPIE.Google Scholar
  14. 14.
    von Schulthess GK, Steinert HC, Hany TF: Integrated PET/CT: current applications and future directions. Radiology 238(2):405–22, 2006CrossRefGoogle Scholar
  15. 15.
    Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–5, 2012CrossRefPubMedGoogle Scholar
  16. 16.
    Manning DJ, Ethell SC, Donovan T: Detection or decision errors? Missed lung cancer from the posteroanterior chest radiograph. Br J Radiol 77(915):231–5, 2004CrossRefPubMedGoogle Scholar
  17. 17.
    Sabnis RW: Color filter technology for liquid crystal displays. Displays 20(3):119–129, 1999CrossRefGoogle Scholar
  18. 18.
    Kimpe T, Xthona A, Matthijs P, et al: Solution for nonuniformities and spatial noise in medical LCD displays by using pixel-based correction. J Digit Imaging 18(3):209–18, 2005CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Crespi A, Bonsignore F, et al: Acceptance tests of diagnostic displays in a PACS system according to AAPM TG18. Phys Med 22(1):17–24, 2006CrossRefGoogle Scholar
  20. 20.
    Crespi A, Bonsignore F, Paruccini N, et al: Grayscale calibration and quality assurance of diagnostic monitors in a PACS system. Radiol Med 111(6):863–75, 2006CrossRefPubMedGoogle Scholar
  21. 21.
    Jerrold T, Bushberg AS, Leidholdt EM, Boone JM: The essential physics of medical imaging. 3rd edition. Lippincott Williams and Wilkins, 2012Google Scholar
  22. 22.
    Krupinski EA, Lubin J, Roehrig H, et al: Using a human visual system model to optimize soft-copy mammography display: influence of veiling glare. Acad Radiol 13(3):289–95, 2006CrossRefPubMedGoogle Scholar
  23. 23.
    Jung H, Kim HJ, Kang WS, et al: Assessment of flat panel LCD primary class display performance based on AAPM TG 18 acceptance protocol. Med Phys 31(7):2155–64, 2004CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao B, Tan Y, Bell DJ, et al: Exploring intra- and inter-reader variability in uni-dimensional, bi-dimensional, and volumetric measurements of solid tumors on CT scans reconstructed at different slice intervals. Eur J Radiol 82(6):959–68, 2013CrossRefPubMedGoogle Scholar
  25. 25.
    Ekpo EU, McEntee MF: Measurement of breast density with digital breast tomosynthesis—a systematic review. Br J Radiol 20140460,2014Google Scholar
  26. 26.
    Manning D. S., Ethell Lesion conspicuity and AFROC performance in pulmonary nodule detection. Progress in Biomedical Optics and Imaging: Medical Imaging. 3(24),2002,300-311Google Scholar
  27. 27.
    Hartling L, Hamm M, Milne A, et al: Validity and Inter-Rater Reliability Testing of Quality Assessment Instruments. Rockville MD, 2012Google Scholar
  28. 28.
    Majumder A, Stevens R: Color nonuniformity in projection-based displays: analysis and solutions. IEEE Trans Vis Comput Graph 10(2):177–88, 2004CrossRefPubMedGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2015

Authors and Affiliations

  1. 1.Discipline of Medical Radiation Sciences, Faculty of Health SciencesUniversity of SydneySydneyAustralia
  2. 2.Department of Radiography and RadiologyUniversity of CalabarCalabarNigeria

Personalised recommendations