Skip to main content

Advertisement

Log in

Breast Density Analysis Using an Automatic Density Segmentation Algorithm

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Breast density is a strong risk factor for breast cancer. In this paper, we present an automated approach for breast density segmentation in mammographic images based on a supervised pixel-based classification and using textural and morphological features. The objective of the paper is not only to show the feasibility of an automatic algorithm for breast density segmentation but also to prove its potential application to the study of breast density evolution in longitudinal studies. The database used here contains three complete screening examinations, acquired 2 years apart, of 130 different patients. The approach was validated by comparing manual expert annotations with automatically obtained estimations. Transversal analysis of the breast density analysis of craniocaudal (CC) and mediolateral oblique (MLO) views of both breasts acquired in the same study showed a correlation coefficient of ρ = 0.96 between the mammographic density percentage for left and right breasts, whereas a comparison of both mammographic views showed a correlation of ρ = 0.95. A longitudinal study of breast density confirmed the trend that dense tissue percentage decreases over time, although we noticed that the decrease in the ratio depends on the initial amount of breast density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Cumulus software, University of Toronto, Toronto, Ontario, Canada

  2. Volpara software is developed by Matakina International limited, Wellington, New Zealand

References

  1. Lokate M, Peeters PHM, Peelen LM, Haars G, Veldhuis WB, Gils CH: Mammographic breast density as a general marker of breast cancer risk. Breast Cancer Res 13:R103, 2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Wolfe JN: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37:2486–2492, 1976

    Article  CAS  PubMed  Google Scholar 

  3. Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S: Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst 102:1224–1237, 2010

    Article  PubMed Central  PubMed  Google Scholar 

  4. McCormack VA, Santos SI: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 15:1159–1169, 2006

    Article  Google Scholar 

  5. Oliver A, Freixenet J, Martí J, Pérez E, Pont J, Denton ERE, Zwiggelaar R: A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 14:87–110, 2010

    Article  PubMed  Google Scholar 

  6. Oliver A, Lladó X, Freixenet J, Martí R, Pérez E, Pont J, Denton ERE, Zwiggelaar R: Influence of using manual or automatic breast density information in a mass detection CAD system. Acad Radiol 17:877–883, 2010

    Article  PubMed  Google Scholar 

  7. Ho WT, Lam PWT: Clinical performance of computer-assisted detection (CAD) system in detecting carcinoma in breasts of different densities. Clin Radiol 58:133–136, 2003

    Article  CAS  PubMed  Google Scholar 

  8. Obenauer S, Sohns C, Werner C, Grabbe E: Impact of breast density on computer-aided detection in full-field digital mammography. J Digit Imaging 19:258–263, 2006

    Article  PubMed Central  PubMed  Google Scholar 

  9. Brem RF, Hoffmeister JW, Rapelyea JA, Zisman G, Mohtashemi K, Jindal G, Disimio MP, Rogers SK: Impact of breast density on computer-aided detection for breast cancer. Am J Roentgenol 184:439–444, 2005

    Article  Google Scholar 

  10. Muhimmah I, Oliver A, Denton ERE, Pont J, Pérez E, Zwiggelaar R: Comparison between Wolfe, Boyd, BI-RADS and Tabár based mammographic risk assessment. Lect Notes Comput Sci 4046:407–415, 2006

    Article  Google Scholar 

  11. Karssemeijer N: Automated classification of parenchymal patterns in mammograms. Phys Med Biol 43:365–378, 1998

    Article  CAS  PubMed  Google Scholar 

  12. Oliver A, Freixenet J, Martí R, Pont J, Pérez E, Denton ERE, Zwiggelaar R: A novel breast tissue density classification methodology. IEEE Trans Inf Technol Biomed 12:55–65, 2008

    Article  CAS  PubMed  Google Scholar 

  13. Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ: The quantitative analysis of mammographic densities. Phys Med Biol 39:1629–1638, 1994

    Article  CAS  PubMed  Google Scholar 

  14. Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ: Automated analysis of mammographic densities. Phys Med Biol 41:909–923, 1996

    Article  CAS  PubMed  Google Scholar 

  15. Highnam R, Brady M, Yaffe MJ, Karssemeijer N, Harvey J: Robust breast composition measurement—VolparaTM. Lect Notes Comput Sci 6136:342–349, 2010

    Article  Google Scholar 

  16. Seo JM, Ko ES, Han BK, Ko EY, Shin JH, Hahn SY: Automated volumetric breast density estimation: a comparison with visual assessment. Clin Radiol 68:690–695, 2013

    Article  CAS  PubMed  Google Scholar 

  17. Oliver A, Lladó X, Pérez E, Pont J, Denton ERE, Freixenet J, Martí J: A statistical approach for breast density segmentation. J Digit Imaging 23:527–537, 2010

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kallenberg MGJ, Lokate M, Van Gils CH, Karssemeijer N: Automatic breast density segmentation: an integration of different approaches. Phys Med Biol 56:2715–2729, 2011

    Article  PubMed  Google Scholar 

  19. Byvatov E, Fechner U, Sadowski J, Schneider G: Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 43:1882–1889, 2003

    Article  CAS  PubMed  Google Scholar 

  20. Papadopoulos A, Fotiadis DI, Likas A: Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines. Artif Intell Med 34:141–150, 2005

    Article  CAS  PubMed  Google Scholar 

  21. Ministerio de Sanidad y Consumo: The National Health System Cancer Strategy. Ministerio de Sanidad y Consumo. 2009

  22. Kwok SM, Chandrasekhar R, Attikiouzel Y, Rickard MT: Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Trans Med Imaging 23:1129–1140, 2004

    Article  PubMed  Google Scholar 

  23. Tortajada M, Oliver A, Martí R, Vilagran M, Ganau S, Tortajada L, Sentís M, Freixenet J: Adapting breast density classification from digitized to full-field digital mammograms. Lect Notes Comput Sci 7361:561–568, 2012

    Article  Google Scholar 

  24. Tortajada M, Oliver A, Martí R, Ganau S, Tortajada L, Sentís M, Freixenet J, Zwiggelaar R: Breast peripheral area correction in digital mammograms. Comput Biol Med 50:32–40, 2014

    Article  PubMed  Google Scholar 

  25. Oliver A, Lladó X, Martí R, Freixenet J, Zwiggelaar R: Classifying mammograms using texture information. In Medical Image Understanding and Analysis pp 223–227, 2007

  26. Ojala T, Pietikinen M, Harwood D: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29:51–59, 1996

    Article  Google Scholar 

  27. Nanni L, Lumini A, Brahnam S: Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49:117–125, 2010

    Article  PubMed  Google Scholar 

  28. Vapnik V: Statistical learning theory. Wiley, New York, 1998

    Google Scholar 

  29. Otsu N: A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66, 1979

    Article  Google Scholar 

  30. Byng JW: Mammographic densities and risk of breast cancer. PhD thesisGraduate. Department of Medical Biophysics, University of Toronto 1997

  31. Vachon CM, Brandt KR, Ghosh K, Scott CG, Maloney SD, Carston MJ, Pankratz VS, Sellers TA: Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomark Prev 16:43–49, 2007

    Article  Google Scholar 

  32. Oliver A, Torrent A, Lladó X, Tortajada M, Tortajada L, Sentís M, Freixenet J, Zwiggelaar R: Automatic microcalcification and cluster detection in digital and digitised mammograms. Knowl-Based Syst 28:68–75, 2012

    Article  Google Scholar 

  33. Boyd NF, Martin LJ, Stone J, Little L, Minkin S, Yaffe MJ: A longitudinal study of the effects of menopause on mammographic features. Cancer Epidemiol Biomark Prev 11:1048–1053, 2002

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Spanish R+D+I grant no. TIN2012-37171-C02-01.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnau Oliver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver, A., Tortajada, M., Lladó, X. et al. Breast Density Analysis Using an Automatic Density Segmentation Algorithm. J Digit Imaging 28, 604–612 (2015). https://doi.org/10.1007/s10278-015-9777-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-015-9777-5

Keywords

Navigation