Advertisement

Journal of Digital Imaging

, Volume 27, Issue 6, pp 737–750 | Cite as

Secured Telemedicine Using Region-Based Watermarking with Tamper Localization

  • Ali Al-HajEmail author
  • Alaa’ Amer
Article

Abstract

Medical images exchanged over public networks require a methodology to provide confidentiality for the image, authenticity of the image ownership and source of origin, and image integrity verification. To provide these three security requirements, we propose in this paper a region-based algorithm based on multiple watermarking in the frequency and spatial domains. Confidentiality and authenticity are provided by embedding robust watermarks in the region-of-non-interest (RONI) of the image using a blind scheme in the discrete wavelet transform and singular value decomposition domain (DWT-SVD). On the other hand, integrity is provided by embedding local fragile watermarks in the region-of-interest (ROI) of the image using a reversible scheme in the spatial domain. The integrity provided by the proposed algorithm is implemented on a block-level of the partitioned-image, thus enabling localized detection of tampered regions. The algorithm was evaluated with respect to imperceptibility, robustness, capacity, and tamper localization capability, using MRI, Ultrasound, and X-ray gray-scale medical images. Performance results demonstrate the effectiveness of the proposed algorithm in providing the required security services for telemedicine applications.

Keywords

Telemedicine Confidentiality Authenticity Integrity Tamper localization Medical image transmission DWT SVD Watermarking 

References

  1. 1.
    Davie B, Florence V, Friede A, Sheehan J, Sisk J: Bringing health-care applications to the internet. IEEE Internet Comput 5(3):42–46, 2001CrossRefGoogle Scholar
  2. 2.
    McEvoy F, Svalastoga E: Security of patient and study data associated with DICOM images when transferred using compact disc media. J Digit Imaging 22(1):65–70, 2007Google Scholar
  3. 3.
    Norcen R, Podesser M, Pommer A, Schmidt HP, Uhl A: Confidential storage and transmission of medical image data. Comput Biol Med 33:277–292, 2003PubMedCrossRefGoogle Scholar
  4. 4.
    Kobayashi L, Furuie S, Barreto P: Providing integrity and authenticity in DICOM images: a novel approach. IEEE Trans Inf Technol Biomed 13(4):582–589, 2009PubMedCrossRefGoogle Scholar
  5. 5.
    Rodrigues JM,Puech W, Fiorio C: Lossless crypto-data hiding in medical images without increasing the original image size. In: Proc. 2nd Int. Conf. Adv. Med. Signal Inf. Process., Sep. 2004, pp 358–365Google Scholar
  6. 6.
    Bernarding J, Thiel A, Grzesik A: A JAVA-based DICOM server with integration of clinical findings and DICOM-conform data encryption. Int J Med Inform 64:429–438, 2001PubMedCrossRefGoogle Scholar
  7. 7.
    Coatrieux G, Maitre H, Sankur B, Rolland Y, Collorec R: Relevance of watermarking in medical imaging. In: Proceedings of the IEEE EMBS Conf. on Information Technology Applications in Biomedicine. Arlington, USA, Nov. 2000, pp 250–255Google Scholar
  8. 8.
    Stallings W: Cryptography and Network Security—Principles and Practice. Prentice-Hall, Englewood Cliffs, 1999Google Scholar
  9. 9.
    Digital Imaging and Communications in Medicine (DICOM) Standard, DICOM: 2006. [Online]. Available: http://medical.nema.org/dicom/2006/
  10. 10.
    Digital Imaging and Communications in Medicine (DICOM): part 15: security profiles ed., National Electrical Manufacturers Association (NEMA), 2001, pS 3.15–2001Google Scholar
  11. 11.
    Cox IJ, Miller ML, Bloom JA: Digital Watermarking. Morgan Kaufmann, San Francisco, 2002, pp 26–36Google Scholar
  12. 12.
    Hartung F, Kutter M: Multimedia watermarking techniques. In: Proc. IEEE, vol. 87, no. 7, pp 1069–1107, July 2006Google Scholar
  13. 13.
    Coatrieux G, Lecornu L, Sankur B, Roux Ch: A review of image watermarking applications in healthcare. Porc. of IEEE-EMBC Conf., New York, USA, 2006, pp 4691–4694Google Scholar
  14. 14.
    Coatrieux G, Quantin C, Montagner J, Fassa M, Allaert FA, Roux Ch: “Watermarking medical images with anonymous patient identification to verify authenticity,” Studies Health Technol. Inf 136:667–672, 2008Google Scholar
  15. 15.
    Coatrieux G, Maitre H, Sankur B: Strict integrity control of biomedical images. In: Proc. SPIE Security Watermarking Multimedia Contents III, SPIE 2001, vol. 4314, San Jose, CA January 2001, pp 229–240Google Scholar
  16. 16.
    Chao H, Hsu C, Miaou S: A data-hiding technique with authentication, integration, and confidentiality for electronic patient records. IEEE Trans Inf Technol Biomed 6(1):46–53, 2002PubMedCrossRefGoogle Scholar
  17. 17.
    Zhou XQ, Huang HK, Lou SL: Authenticity and integrity of digital mammography images. IEEE Trans Med Imaging 20(8):784–791, 2001PubMedCrossRefGoogle Scholar
  18. 18.
    De Vleeschouwer C, Delaigle J, Macq B: Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans Multimed 5:97–105, 2003CrossRefGoogle Scholar
  19. 19.
    Tan C, Ng C, Xu X, Poh C, Yong L, Sheah K: Security protection of DICOM medical images using dual-layer reversible watermarking with tamper detection capability. J Digit Imaging 24(3):528–540, 2011PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Guo X, Zhuang T: A region-based lossless watermarking scheme for enhancing security of medical data. J Digit Imaging 22(1):53–64, 2009PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Alattar A: Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13:1147–1156, 2004PubMedCrossRefGoogle Scholar
  22. 22.
    Thodi D, Rodríguez J: Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16:721–730, 2007PubMedCrossRefGoogle Scholar
  23. 23.
    Celik M, Sharma G, Tekalp M, Saber E: Lossless generalized-LSB data embedding. IEEE Trans Image Process 14:253–266, 2005PubMedCrossRefGoogle Scholar
  24. 24.
    Celik MU M, Sharma G, Tekalp A: Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans Image Process 15:1042–1049, 2006PubMedCrossRefGoogle Scholar
  25. 25.
    Zhou Z, Huang H, Liu B: Digital signature embedding (DSE) for medical image integrity in a data grid off-site backup archive. Proc SPIE 5748:306–317, 2005CrossRefGoogle Scholar
  26. 26.
    Liew S, Zain J: Tamper localization and lossless recovery watermarking scheme. Commun Comput Inf Sci 179(1):555–566, 2011CrossRefGoogle Scholar
  27. 27.
    Liew S, Way S, Zain J: Tamper localization and lossless recovery watermarking scheme with ROI Segmentation and Multilevel Authentication. J Digit Imaging 24:114–125, 2012Google Scholar
  28. 28.
    Osamah M, Khoo B: Authentication and data hiding using a hybrid ROI-based watermarking scheme for DICOM images. J Digit Imaging 24:114–125, 2011CrossRefGoogle Scholar
  29. 29.
    Guo X, Zhuang T: Lossless watermarking for verifying the integrity of medical images with tamper localization. J Digit Imaging 22(6):620–628, 2009PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2014

Authors and Affiliations

  1. 1.Department of Computer Engineering, King Abdullah II Faculty of EngineeringPrincess Sumaya University for Technology, Al-JubeihaAmmanJordan
  2. 2.Ideal SolutionsDohaQatar

Personalised recommendations