Journal of Digital Imaging

, Volume 27, Issue 1, pp 98–107 | Cite as

Computer-Aided Diagnosis for Phase-Contrast X-ray Computed Tomography: Quantitative Characterization of Human Patellar Cartilage with High-Dimensional Geometric Features

  • Mahesh B. Nagarajan
  • Paola Coan
  • Markus B. Huber
  • Paul C. Diemoz
  • Christian Glaser
  • Axel Wismüller
Article

Abstract

Phase-contrast computed tomography (PCI-CT) has shown tremendous potential as an imaging modality for visualizing human cartilage with high spatial resolution. Previous studies have demonstrated the ability of PCI-CT to visualize (1) structural details of the human patellar cartilage matrix and (2) changes to chondrocyte organization induced by osteoarthritis. This study investigates the use of high-dimensional geometric features in characterizing such chondrocyte patterns in the presence or absence of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and statistical features derived from gray-level co-occurrence matrices were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic curve (AUC). SIM-derived geometrical features exhibited the best classification performance (AUC, 0.95 ± 0.06) and were most robust to changes in ROI size. These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated and non-subjective manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies.

Keywords

Osteoarthritis Phase-contrast imaging Scaling index method Gray-level co-occurrence matrix Support vector regression 

References

  1. 1.
    Woolf A, Pfleger B: Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656, 2003PubMedCentralPubMedGoogle Scholar
  2. 2.
    Yelin E: Cost of musculoskeletal diseases: impact of work disability and functional decline. J Rheumatol 68:8–11, 2003Google Scholar
  3. 3.
    Maclean C, Knight K, Paulus H, Brook R, Shekelle P: Costs attributable to osteoarthritis. J Rheumatol 25:2213–2218, 1998PubMedGoogle Scholar
  4. 4.
    Goldring MB, Goldring SR: Osteoarthritis. J Cell Physiol 213:626–634, 2007PubMedCrossRefGoogle Scholar
  5. 5.
    Coan P, Mollenhauer J, Wagner A, Muehleman C, Bravin A: Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF. Eur J Radiol 68:41–48, 2008CrossRefGoogle Scholar
  6. 6.
    Bravin A, Coan P, Suortti P: X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 58(1):R1–35, 2013PubMedCrossRefGoogle Scholar
  7. 7.
    Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I: On the possibility of X-ray phase contrast micro-imaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66:5486–5492, 1995CrossRefGoogle Scholar
  8. 8.
    Davis T, Gao D, Gureyev T, Stevenson A, Wilkins S: Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595–598, 1995CrossRefGoogle Scholar
  9. 9.
    Takeda T, Momose A, Itai Y, Jin W, Hirano K: Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions. Acad Radiol 2:799–803, 1995PubMedCrossRefGoogle Scholar
  10. 10.
    Castelli E, Tonutti M, Arfelli F, Longo R, Quaia E, Rigon L, Sanabor D, Zanconati F, Dreossi D, Abrami A, Quai E, Bregant P, Casarin K, Chenda V, Menk RH, Rokvic T, Vascotto A, Tromba G, Cova MA: Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259:684–694, 2011PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao Y, Brun E, Coan P, Huang Z, Sztrókay A, Diemoz PC, Liebhardt S, Mittone A, Gasilov S, Miao J, Bravin A: High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. PNAS, doi:10.1073/pnas.1204460109, 2012
  12. 12.
    Mollenhauer J, Aurich M, Zhong Z, Muehleman C, Cole A, Hasnah M, Oltulu O, Kuettner K, Margulis A, Chapman L: Diffraction-enhanced X-ray imaging of articular cartilage. Osteoarthritis Cartilage 10:163–171, 2002PubMedCrossRefGoogle Scholar
  13. 13.
    Muehleman C, Majumdar S, Issever A, Arfelli F, Menk R, Rigon L, Heitner G, Reime B, Metge J, Wagner A, Kuettner K, Mollenhauer J: X-ray detection of structural orientation in human articular cartilage. Osteoarthritis Cartilage 12:97–105, 2004PubMedCrossRefGoogle Scholar
  14. 14.
    Coan P, Bamberg F, Diemoz PC, Bravin A, Timpert K, Mützel E, Raya J, Adam-Neumair S, Reiser MF, Glaser C: Characterization of osteoarthritic and normal human patella cartilage by computed tomography X-ray phase-contrast imaging: a feasibility study. Invest Radiol 45:437–444, 2010PubMedGoogle Scholar
  15. 15.
    Chapman D, Thomlinson W, Johnston R, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F, Sayers D: Diffraction enhanced X-ray imaging. Phys Med Biol 42:2015–2025, 1997PubMedCrossRefGoogle Scholar
  16. 16.
    Bravin A: Exploiting the X-ray refraction contrast with an analyser: the state of the art. J Phys D: Appl Phys 36:24–29, 2003CrossRefGoogle Scholar
  17. 17.
    Coan P, Wagner A, Bravin A, Diemoz PC, Keyriläinen J, Mollenhauer J: In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs. Phys Med Biol 55:7649–7662, 2010PubMedCrossRefGoogle Scholar
  18. 18.
    Benninghoff A: Form und bau der gelenkknorpel in ihren beziehungen zur function. ii. der aufbau des gelenkknorpels in seinen beziehungen zur function. Cell Tissue Res 2:783–862, 1925Google Scholar
  19. 19.
    Jamitzky F, Stark W, Bunk W, Thalhammer S, Raeth C, Aschenbrenner T, Morfill G, Heckl W: Scaling-index method as an image processing tool in scanning-probe microscopy. Ultramicroscopy 86:241–246, 2000CrossRefGoogle Scholar
  20. 20.
    Boehm HF, Raeth C, Monetti RA, Mueller D, Newitt D, Majumdar S, Rummeny E, Morfill G, Link TM: Local 3D scaling properties for the analysis of trabecular bone extracted from high-resolution magnetic resonance imaging of human trabecular bone: comparison with bone mineral density in the prediction of biomechanical strength in vitro. Invest Radiol 38:269–280, 2003PubMedGoogle Scholar
  21. 21.
    Huber MB, Lancianese SL, Nagarajan MB, Ikpot IZ, Lerner AL, Wismüller A: Prediction of biomechanical properties of trabecular bone in MR images with geometric features and support vector regression. IEEE Trans Biomed Eng 58:1820–1826, 2011PubMedCrossRefGoogle Scholar
  22. 22.
    Raeth C, Bunk W, Huber MB, Morfill GE, Retzlaff J, Schuecker P: Analysing large scale structure: I. Weighted scaling indices and constrained randomization. Mon Not R Astron Soc 337:413–421, 2002CrossRefGoogle Scholar
  23. 23.
    Haralick RM, Shanmuga K, Dinstein I: Textural features for image classification. IEEE Trans Sys Man Cybern Smc 3:610–621, 1973CrossRefGoogle Scholar
  24. 24.
    Huber MB, Nagarajan MB, Leinsinger G, Eibel R, Ray L, Wismüller A: Performance of topological texture features to classify fibrotic interstitial lung disease patterns. Med Phys 38:2035–2044, 2011PubMedCrossRefGoogle Scholar
  25. 25.
    Korfiatis P, Kalogeropoulou C, Karahaliou A, Kazantzi A, Skiadopoulos S, Costaridoua L: Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT. Med Phys 35:5290–5302, 2008PubMedCrossRefGoogle Scholar
  26. 26.
    Chen W, Giger ML, Li H, Bick U, Newstead GM: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58:562–571, 2007PubMedCrossRefGoogle Scholar
  27. 27.
    Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A: Classification of small lesions on breast MRI: Evaluating the role of dynamically extracted texture features through feature selection. J Med Biol Eng 33(1):59–68, 2013CrossRefGoogle Scholar
  28. 28.
    Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismüller A: Classification of small lesions in dynamic breast MRI: eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement. Mach Vision Appl, doi:10.1007/s00138-012-0456-y, 2012
  29. 29.
    Drucker H, Burges C, Kaufman L, Smola A, Vapnik V: Support vector regression machines. Adv Neural Inf Process Syst 9:155–161, 1996Google Scholar
  30. 30.
    Fiedler S, Bravin A, Keyriläinen J, Fernández M, Suortti P, Thomlinson W, Tenhunen M, Virkkunen P, Karjalainen-Lindsberg M: Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT. Phys Med Biol 49:175–188, 2004PubMedCrossRefGoogle Scholar
  31. 31.
    Coan P, Peterzol A, Fiedler S, Ponchut C, Labiche J, Bravin A: Evaluation of imaging performance of a taper optics CCD ‘FReLoN’ camera designed for medical imaging. J Synchrotron Radiat 13:260–270, 2006PubMedCrossRefGoogle Scholar
  32. 32.
    Dilmanian F, Zhong Z, Ren B, Wu X, Chapman L, Orion I, Thomlinson W: Computed tomography of X-ray index of refraction using the diffraction enhanced imaging method. Phys Med Biol 45:933–946, 2000PubMedCrossRefGoogle Scholar
  33. 33.
    Anys H, He D: Evaluation of textural and multipolarization radar features for crop classification. IEEE Trans Geosci Remote Sens 33:1170–1181, 1995CrossRefGoogle Scholar
  34. 34.
    Chang C-C, Lin C-J: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2:27.1–27.27, 2011, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  35. 35.
    Wright SP: Adjusted P-values for simultaneous inference. Biometrics 48:1005–1013, 1992CrossRefGoogle Scholar
  36. 36.
    Holm S: A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70, 1979Google Scholar
  37. 37.
    Hirai T, Yamada H, Sasaki M, Hasegawa D, Morita M, Oda Y, Takaku J, Hanashima T, Nitta N, Takahashi M, Murata K: Refraction contrast 11×-magnified X-ray imaging of large objects by MIRRORCLE-type table-top synchrotron. J Synchrotron Radiat 13:397–402, 2006PubMedCrossRefGoogle Scholar
  38. 38.
    Grüner F, Becker S, Schramm U, Eichner T, Fuchs M, Weingartner R, Habs D, Meyer-ter Vehn J, Geissler M, Ferrario M, Serafini L, van der Geer B, Backe H, Lauth W, Reiche S: Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl Phys B 86(3):431–435, 2007CrossRefGoogle Scholar
  39. 39.
    Habs D, Hegelich M, Schreiber J, Gross M, Henig A, Kiefer D, Jung D: Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and γ-ray beams. Appl Phys 93(2–3):349–354, 2008CrossRefGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2013

Authors and Affiliations

  • Mahesh B. Nagarajan
    • 1
  • Paola Coan
    • 2
    • 3
    • 4
  • Markus B. Huber
    • 5
  • Paul C. Diemoz
    • 3
    • 4
  • Christian Glaser
    • 2
  • Axel Wismüller
    • 2
    • 5
  1. 1.Department of Biomedical EngineeringUniversity of RochesterRochesterUSA
  2. 2.Faculty of Medicine and Institute of Clinical RadiologyLudwig Maximilians UniversityMunichGermany
  3. 3.Faculty of PhysicsLudwig Maximilians UniversityMunichGermany
  4. 4.European Synchrotron Radiation FacilityGrenobleFrance
  5. 5.Department of Imaging SciencesUniversity of RochesterRochesterUSA

Personalised recommendations