Journal of Digital Imaging

, Volume 26, Issue 1, pp 82–96

Image Analysis for Cystic Fibrosis: Computer-Assisted Airway Wall and Vessel Measurements from Low-Dose, Limited Scan Lung CT Images

  • Erkan Ü. Mumcuoğlu
  • Frederick R. Long
  • Robert G. Castile
  • Metin N. Gurcan
Article

Abstract

Cystic fibrosis (CF) is a life-limiting genetic disease that affects approximately 30,000 Americans. When compared to those of normal children, airways of infants and young children with CF have thicker walls and are more dilated in high-resolution computed tomographic (CT) imaging. In this study, we develop computer-assisted methods for assessment of airway and vessel dimensions from axial, limited scan CT lung images acquired at low pediatric radiation doses. Two methods (threshold- and model-based) were developed to automatically measure airway and vessel sizes for pairs identified by a user. These methods were evaluated on chest CT images from 16 pediatric patients (eight infants and eight children) with different stages of mild CF related lung disease. Results of threshold-based, corrected with regression analysis, and model-based approaches correlated well with both electronic caliper measurements made by experienced observers and spirometric measurements of lung function. While the model-based approach results correlated slightly better with the human measurements than those of the threshold method, a hybrid method, combining these two methods, resulted in the best results.

Keywords

Cystic fibrosis Computed tomography Image analysis Semi-automated measurement 

References

  1. 1.
    Ramsey B. W: Management of pulmonary disease in patients with cystic fibrosis. New Engl J Med 335:179–188, 1996PubMedCrossRefGoogle Scholar
  2. 2.
    Cantin A: Cystic fibrosis lung inflammation: early, sustained, and severe. Am J Respir Crit Care Med 151:939–41, 1995PubMedGoogle Scholar
  3. 3.
    Rosenfeld M, Gibson R. L, McNamara S, Emerson J, Burns J. L, Castile R, et al: Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol 32:356–366, 2001PubMedCrossRefGoogle Scholar
  4. 4.
    Long F. R, Williams R. S, Castile R. G: Structural airway abnormalities in infants and young children with cystic fibrosis. J Pediatr 144:154–61, 2004PubMedCrossRefGoogle Scholar
  5. 5.
    Ranganathan S.C, Stocks J, Dezateux C, Bush A, Wade A, Carr S, et al: The evolution of airway function in early childhood following clinical diagnosis of cystic fibrosis. Am J Respir Crit Care Med 2004 169:928–933, 2004PubMedCrossRefGoogle Scholar
  6. 6.
    Linnane B. M, Hall G. L, Nolan G, Brennan S, Stick S. M, Sly P. D, AREST-CF, et al: Lung function in infants with cystic fibrosis diagnosed by newborn screening. Am J Respir Crit Care Med 178:1238–1244, 2008PubMedCrossRefGoogle Scholar
  7. 7.
    Sly P. D, Brennan S, Gangell C, de Klerk N, Murray C, L. Mott L, Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST-CF), et al: Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med. 180: 146–52, 2009PubMedCrossRefGoogle Scholar
  8. 8.
    Stick S. M, Brennan S, Murray C, Douglas T, von Ungern-Sternberg B.S, Garratt L. W, Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF), et al: Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J Pediatr 155:623–628, 2009PubMedCrossRefGoogle Scholar
  9. 9.
    Little SA, Sproule MW, Cowan M.D, Macleod KJ, Robertson M, Love JG, et al: High resolution computed tomographic assessment of airway wall thickness in chronic asthma: reproducibility and relationship with lung function and severity. Thorax 57:247–53, 2002PubMedCrossRefGoogle Scholar
  10. 10.
    de Jong P. A, Nakano Y, Lequin M. H, and Tiddens H. A, Dose reduction for CT in children with cystic fibrosis: is it feasible to reduce the number of images per scan? Pediatr Radiol 36:50–3, Jan 2006PubMedCrossRefGoogle Scholar
  11. 11.
    Weinheimer O, Achenbach T, Bletz C, Düber C, Kauczor H-U, Heussel C. P: About objective 3-D analysis of airway geometry in computerized tomography. IEEE Trans Med Imaging 27:64–74, 2008PubMedCrossRefGoogle Scholar
  12. 12.
    Petersen J, Lo P, Nielsen M, Edula G, Ashraf H, Dirksen A, De Bruijne M: Quantitative analysis of airway abnormalities. In: Karssemeijer N, Summers RM Eds. Medical Imaging 2010: Computer-Aided Diagnosis. Conf Proc of SPIE, vol. 7624. SPIE, Bellingham, 2010, p 76241SCrossRefGoogle Scholar
  13. 13.
    Nakamura M, Wada S, Miki T, Shimada Y, Suda Y, Tamura G: Automated segmentation and morphometric analysis of the human airway tree from multidetector CT images. J. Physiol. Sci 58:493–498, 2008PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng I, Nilufar S, Flores-Mir C, Basu A, Airway segmentation and measurement in CT images. Conf Proc IEEE EMBS, pp. 795–799, 2007.Google Scholar
  15. 15.
    Li K, Wu X, Chen D. Z, Sonka M: Optimal surface segmentation in volumetric images—a graph-theoretic approach. IEEE Trans Pattern Anal Mach Intel, 28:119–134, 2006CrossRefGoogle Scholar
  16. 16.
    Estepar R. S. J, Reilly J. J, Silverman E. K, Washko G. R: Three-dimensional airway measurements and algorithms. Proc Am Thorac Soc 5:905–909, 2008CrossRefGoogle Scholar
  17. 17.
    D’Souza ND, Reinhardt JM, Hoffman EA, ASAP: Interactive quantification of 2D airway geometry, Proc. SPIE Conf. Medical Imaging, Newport Beach, CA, Feb. 10–15, 1996, vol. 2709, pp. 180–196.Google Scholar
  18. 18.
    Sluimer I, Schilham A, Prokop M, van Ginneken B: Computer analysis of CT scans of the lung: a survey. IEEE Trans. Medical Imaging 25:385–405, 2006CrossRefGoogle Scholar
  19. 19.
    Tschirren J, Hoffman E. A, McLennan G, Sonka M: Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans. Medical Imaging 24:1529–1539, 2005CrossRefGoogle Scholar
  20. 20.
    Gurcan MN, Sahiner B, Petrick N, Chan H-P, Kazerooni EA, Cascade PN, Hadjiiski LM: Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med Phys 29:2552–2558, 2002PubMedCrossRefGoogle Scholar
  21. 21.
    King G. G, Muller N. L, Whittall K. P, Xiang Q. S, Pare P. D: An analysis algorithm for measuring airway lumen and wall areas from high-resolution computed tomographic data. Am J Respir Crit Care Med 161:574–580, 2000PubMedGoogle Scholar
  22. 22.
    Brown RH, Herold CJ, Hirshman CA, Zerhouni EA, Mitzner W: In vivo measurements of airway reactivity using high-resolution computed tomography. Am Rev Respir Dis 144:208–212, 1991PubMedCrossRefGoogle Scholar
  23. 23.
    McNittGray M. F, Goldin J. G, Johnson T. D, Tashkin D. P, Aberle D. R: Development and testing of image-processing methods for the quantitative assessment of airway hyperresponsiveness from high-resolution CT images. J Comput Assist Tomogr 21:939–947, 1997CrossRefGoogle Scholar
  24. 24.
    Amirav I, Kramer S. S, Grunstein M. M, Hoffman E. A: Assessment of methacholine-induced airway constriction by ultrafast high-resolution computed tomography. J Appl Physiol 75:2239–2250, 1993PubMedGoogle Scholar
  25. 25.
    Nakano Y, Muro S, Sakai H, Hirai T, Chin K, Tsukino M, et al: Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med 162:1102–1108, 2000PubMedGoogle Scholar
  26. 26.
    Berger P, Perot V, Desbarats P, Tunon-de-Lara J. M, Marthan R, Laurent F: Airway wall thickness in cigarette smokers: quantitative thin-section CT assessment. Radiology 235:1055–1064, 2005PubMedCrossRefGoogle Scholar
  27. 27.
    Montaudon M, Berger P, de Dietrich G, Braquelaire A, Marthan R, Tunon-de-Lara J. M, et al: Assessment of airways with three-dimensional quantitative thin-section CT: in vitro and in vivo validation. Radiology 242:563–572, 2007PubMedCrossRefGoogle Scholar
  28. 28.
    Saba O, Hoffman E. A, Reinhardt J. M: Maximizing quantitative accuracy of lung airway lumen and wall measures obtained from X-ray CT imaging. J. Applied Physiology 95:1063–1075, 2003Google Scholar
  29. 29.
    Reinhardt J. M, D’Souza N. D, Hoffman E. A: Accurate measurement of intra-thoracic airways. IEEE Trans. Medical Imaging 16:820–827, 1997CrossRefGoogle Scholar
  30. 30.
    Nakano Y, Wong J. C, de Jong P. A, Buzatu L, Nagao T, Coxson H. O, et al: The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 171:142–146, 2005PubMedCrossRefGoogle Scholar
  31. 31.
    Venkatraman R, Raman R, Raman B, Moss R. B, Rubin G. D, Mathers L. H, et al: Fully automated system for three-dimensional bronchial morphology analysis using volumetric multidetector computed tomography of the chest. J Digit Imaging 19:132–139, 2006PubMedCrossRefGoogle Scholar
  32. 32.
    Mumcuoglu EU, Prescott J, Baker BN, Clifford B, Long F, Castile R, Gurcan MN: Image Analysis for Cystic Fibrosis: Automatic Lung Airway Wall and Vessel Measurement on CT Images. IEEE EMBC 2009:3545–8, 2009Google Scholar
  33. 33.
    Long F. R, Castile R. G, Brody A. S, Hogan M. J, Flucke R. L, Filbrun D. A, and McCoy K. S: Lungs in infants and young children: improved thin-section CT with a noninvasive controlled ventilation technique—initial experience. Radiology 212:588–93, 1999PubMedGoogle Scholar
  34. 34.
    Long F. R and Castile R. G: Technique and clinical applications of full-inflation and end-exhalation controlled-ventilation chest CT in infants and young children. Pediatr Radiol 31:413–22, 2001PubMedCrossRefGoogle Scholar
  35. 35.
    Mueller K. S, Long F. R, Flucke R. L and Castile R. G:Volume-monitored chest CT: a simplified method for obtaining motion-free images near full inspiratory and end expiratory lung volumes: Pediatr Radiol 40:1663–9, 2010PubMedCrossRefGoogle Scholar
  36. 36.
    King GG, Muller NL, Pare PD: Evaluation of airways in obstructive pulmonary disease using high-resolution computed tomography. Am J Respir Crit Care Med 159:992–1004, 1999PubMedGoogle Scholar
  37. 37.
    Webb WR, Muller NL, Naidich DP: High-Resolution CT of the Lung. Philadelphia: Lippincott Williams and Wilkins, 2001Google Scholar
  38. 38.
    Lum S, Stocks J, Castile R.G, Davis , Henschen M, Jones M, et al: Standards for infant pulmonary function testing: raised volume forced expirations in infants: guidelines for current practice. ATS/ERS Consensus Statement. Am J Respir Crit Care Med 172:1463–1471, 2005CrossRefGoogle Scholar
  39. 39.
    Miller M. R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, ATS/ERS Task Force, et al: Standardisation of spirometry. Eur Respir J 26:319–338, 2005PubMedCrossRefGoogle Scholar
  40. 40.
    Jones M, Castile R, Davis S, Kisling J, Filbrun D, Flucke R, et al: Forced expiratory flows and volumes in infants: normative data and lung growth. Am J Respir Crit Care Med 161:353–359, 2000PubMedGoogle Scholar
  41. 41.
    Stanojevic S, Wade A, Stocks J, Hankinson J, Coates A. L, Pan H, et al: Reference ranges for spirometry across all ages: a new approach. Am J Respir Crit Care Med., vol. 177, pp. 253–260, 2008.PubMedCrossRefGoogle Scholar
  42. 42.
    Cheng Y, Sato Y, Tanaka H, Nishii T, Sugano N, Nakamura H, et al: Accurate thickness measurement of two adjacent sheet structures in CT images. IEICE Transactions on Information and Systems E90-D(1):271–282, 2007CrossRefGoogle Scholar
  43. 43.
    Streekstra G.J, Strackee S.D, Maas M, ter Wee R, Venema H.W: Model-based cartilage thickness measurement in the submillimeter range. Med Phys 34:3562–3570, 2007PubMedCrossRefGoogle Scholar
  44. 44.
    Ionescu C.M, Segers P, Keyser R.D: Mechanical properties of the respiratory system derived from morphologic insight. IEEE Trans. on Biomed Engineering 56:949–959, 2009CrossRefGoogle Scholar
  45. 45.
    Schwarzband G, Kiryati N: The point spread function of spiral CT. Phys Med Bio 50:5307–5322, 2005PubMedCrossRefGoogle Scholar
  46. 46.
    Williamson J. P, James A. L, Phillips M. J, Sampson D. D, Hillman D. R, Eastwood P. R: Breakthrough in respiratory medicine: quantifying tracheobronchial tree dimensions: methods, limitations and emerging techniques. EurRespirJ 34:42–55, 2009Google Scholar
  47. 47.
    Luenberger D.G, Ye Y: Linear and Nonlinear Programming, 3rd ed. New York: Springer, 2008Google Scholar
  48. 48.
    Bland J. M, Altman D. G: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–10, 1986PubMedCrossRefGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2012

Authors and Affiliations

  • Erkan Ü. Mumcuoğlu
    • 1
  • Frederick R. Long
    • 2
  • Robert G. Castile
    • 2
  • Metin N. Gurcan
    • 3
  1. 1.Health Informatics Department, Informatics InstituteMiddle East Technical UniversityAnkaraTurkey
  2. 2.Center for Perinatal Research, Research Institute at Nationwide Children’s Hospital, College of Medicine and Public HealthThe Ohio State UniversityColumbusUSA
  3. 3.Biomedical Informatics DepartmentThe Ohio State UniversityColumbusUSA

Personalised recommendations