Journal of Digital Imaging

, Volume 24, Issue 6, pp 999–1009 | Cite as

DRR and Portal Image Registration for Automatic Patient Positioning in Radiotherapy Treatment

  • Ma Consuelo Bastida-Jumilla
  • Jorge Larrey-Ruiz
  • Rafael Verdú-Monedero
  • Juan Morales-Sánchez
  • José-Luis Sancho-Gómez
Article

Abstract

Image processing turns out to be essential in the planning and verification of radiotherapy treatments. Before applying a radiotherapy treatment, a dosimetry planning must be performed. Usually, the planning is done by means of an X-ray volumetric analysis using computerized tomography, where the area to be radiated is marked out. During the treatment phase, it is necessary to place the patient under the particle accelerator exactly as considered in the dosimetry stage. Coarse alignment is achieved using fiduciary markers placed over the patient’s skin as external references. Later, fine alignment is provided by comparing a digitally reconstructed radiography (DRR) from the planning stage and a portal image captured by the accelerator in the treatment stage. The preprocessing of DRR and portal images, as well as the minimization of the non-shared information between both kinds of images, is mandatory for the correct operation of the image registration algorithm. With this purpose, mathematical morphology and image processing techniques have been used. The present work describes a fully automatic method to calculate more accurately the necessary displacement of the couch to place the patient exactly at the planned position. The proposed method to achieve the correct positioning of the patient is based on advanced image registration techniques. Preliminary results show a perfect match with the displacement estimated by the physician.

Keywords

Radiotherapy Image registration Image feature enhancement Biomedical image analysis 

References

  1. 1.
    Wu J, Haycocks T, Alasti H, Ottewell G, Middlemiss N, Abdolell M, Warde P, Toi A, Catton C: Positioning errors and prostate motion during conformal prostate radiotherapy using on-line isocentre set-up verification and implanted prostate markers. Radiotherapy and Oncology 61(2):127–133, 2001PubMedCrossRefGoogle Scholar
  2. 2.
    Yang Y, Xing L: Quantitative measurement of mlc leaf displacements using an electronic portal image device. Physics in Medicine and Biology 49(8):1521, 2004PubMedCrossRefGoogle Scholar
  3. 3.
    Hashimoto S: Remote verification in radiotherapy using DRR and portal images: a pilot study. International Journal of Radiation Oncology, Biology, Physics 50:579–585, 2001PubMedCrossRefGoogle Scholar
  4. 4.
    Modersitzki J: Numerical methods for image registration. Oxford University Press, New York, 2004Google Scholar
  5. 5.
    Matsopoulos GK, Asvestas PA, Delibasis KK, Kouloulias V, Uzunoglu N, Karaiskos P, Sandilos P: Registration of electronic portal images for patient set-up verification. Physics in Medicine and Biology 49(14):3279, 2004PubMedCrossRefGoogle Scholar
  6. 6.
    Clippe S, Sarrut D, Malet C, Miguet S, Ginestet C, Carrie C: Patient setup error measurement using 3d intensity-based image registration techniques. International Journal of Radiation Oncology*Biology*Physics 56(1):259–265, 2003CrossRefGoogle Scholar
  7. 7.
    Kim YJ, Lee DH, Hong SH: A study on portal image for the automatic verification of radiation therapy. IEICE Trans Fundam Electron Commun Comput Sci (Inst Electron Inf Commun Eng) 82(6):945–951, 1999Google Scholar
  8. 8.
    Kunzler T, Grezdo J, Bogner J, Birkfellner W, Georg D: Registration of drrs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment. Physics in Medicine and Biology 52(8):2157, 2007PubMedCrossRefGoogle Scholar
  9. 9.
    Khamene A, Bloch P, Wein W, Svatos M, Sauer F: Automatic registration of portal images and volumetric CT for patient positioning in radiation therapy. Medical Image Analysis 10:96–112, 2006PubMedCrossRefGoogle Scholar
  10. 10.
    Serra J: Image analysis and mathematical morphology. Academic, London, 1982Google Scholar
  11. 11.
    Soille P: Morphological Image Analysis. Springer, Berlin, 1999Google Scholar
  12. 12.
    Bijhold J, Gilhuijs KGA, van Herk M, Meertens H: Radiation field edge detection in portal images. Physics in Medicine and Biology 36(12):1705, 1991PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, C.W., Lai, W., Yin, F.F., Chen, L.: Portal image feature extraction by hierarchical region processing technique. In: Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st century. IEEE International Conference on. Volume 4. (22–25) 3561–566 (1995)Google Scholar
  14. 14.
    Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R: Engineering and algorithm design for an image processing api: A technical report on itk—the insight toolkit. Studies in Health Technology and Informatics 85:586–592, 2002PubMedGoogle Scholar
  15. 15.
    Larrey-Ruíz J, Verdú-Monedero R, Morales-Sánchez J: A Fourier domain framework for variational image registration. Journal of Mathematical Imaging and Vision 32:57–72, 2008CrossRefGoogle Scholar
  16. 16.
    Fischer B, Modersitzki J: Fast diffusion registration. In: Nashed MZ, Scherzer O Eds. Inverse problems, image analysis, and medical imaging. Contemporary Mathematics, vol. 313. AMS, Providence, 2002, pp 117–129Google Scholar
  17. 17.
    Verdú-Monedero R, Larrey-Ruíz J, Morales-Sánchez J: Frequency implementation of the Euler-Lagrange equations for variational image registration. IEEE Signal Processing Letters 15:321–324, 2008CrossRefGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2011

Authors and Affiliations

  • Ma Consuelo Bastida-Jumilla
    • 1
  • Jorge Larrey-Ruiz
    • 1
  • Rafael Verdú-Monedero
    • 1
  • Juan Morales-Sánchez
    • 1
  • José-Luis Sancho-Gómez
    • 1
  1. 1.Tecnologías de la Información y las Comunicaciones DepartmentUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations