Journal of Digital Imaging

, Volume 24, Issue 6, pp 1078–1086 | Cite as

Automated Tracing of the Adventitial Contour of Aortoiliac and Peripheral Arterial Walls in CT Angiography (CTA) to Allow Calculation of Non-calcified Plaque Burden

  • Bhargav Raman
  • Raghav Raman
  • Geoffrey D. Rubin
  • Sandy Napel


Aortoiliac and lower extremity arterial atherosclerotic plaque burden is a risk factor for the development of visceral and peripheral ischemic and aneurismal vascular disease. While prior research allows automated quantification of calcified plaque in these body regions using CT angiograms, no automated method exists to quantify soft plaque. We developed an automatic algorithm that defines the outer wall contour and wall thickness of vessels to quantify non-calcified plaque in CT angiograms of the chest, abdomen, pelvis, and lower extremities. The algorithm encodes the search space as a constrained graph and calculates the outer wall contour by deriving a minimum cost path through the graph, following the visible outer wall contour while minimizing path tortuosity. Our algorithm was statistically equivalent to a reference standard made by two reviewers. Absolute error was 1.9 ± 2.3% compared to the inter-observer variability of 3.9 ± 3.6%. Wall thickness in vessels with atherosclerosis was 3.4 ± 1.6 mm compared to 1.2 ± 0.4 mm in normal vessels. The algorithm shows promise as a tool for quantification of non-calcified plaque in CT angiography. When combined with previous research, our method has the potential to quantify both non-calcified and calcified plaque in all clinically significant systemic arteries, from the thoracic aorta to the arteries of the calf, over a wide range of diameters. This algorithm has the potential to enable risk stratification of patients and facilitate investigations into the relationships between asymptomatic atherosclerosis and a variety of behavioral, physiologic, pathologic, and genotypic conditions.


Soft plaque Quantification Algorithm CT angiography Arteries Graph method 


  1. 1.
    Wassef M, Upchurch Jr, GR, Kuivaniemi H, Thompson RW, Tilson 3rd, MD: Challenges and opportunities in abdominal aortic aneurysm research. J Vasc Surg 45:192–198, 2007PubMedCrossRefGoogle Scholar
  2. 2.
    Allison MA, Kwan K, DiTomasso D, Wright CM, Criqui MH: The epidemiology of abdominal aortic diameter. J Vasc Surg 48:121–127, 2008PubMedCrossRefGoogle Scholar
  3. 3.
    Ito S, et al: Differences in atherosclerotic profiles between patients with thoracic and abdominal aortic aneurysms. Am J Cardiol 101:696–699, 2008PubMedCrossRefGoogle Scholar
  4. 4.
    Fagan-Dubin L: Atherosclerosis: a major cause of peripheral vascular disease. Nurs Clin North Am 12:101–108, 1977PubMedGoogle Scholar
  5. 5.
    Lee AJ, Fowkes FG, Carson MN, Leng GC, Allan PL: Smoking, atherosclerosis and risk of abdominal aortic aneurysm. Eur Heart J 18:671–676, 1997PubMedGoogle Scholar
  6. 6.
    Sassa S, Shimada K, Yoshida K, Tanaka H, Jissho S, Yoshikawa J: Comparison of 64-slice multi-detector computed tomography coronary angiography between asymptomatic, type 2 diabetes mellitus and impaired glucose tolerance patients. J Cardiol 52:133–139, 2008PubMedCrossRefGoogle Scholar
  7. 7.
    Napoli A, et al: 64-MDCT imaging of the coronary arteries and systemic arterial vascular tree in a single examination: optimisation of the scan protocol and contrast-agent administration. Radiol Med 113:799–816, 2008PubMedCrossRefGoogle Scholar
  8. 8.
    Takasu J, et al: Inflammation and descending thoracic aortic calcification as detected by computed tomography: the multi-ethnic study of atherosclerosis. Atherosclerosis 199:201–206, 2008PubMedCrossRefGoogle Scholar
  9. 9.
    Yorgun H, Hazirolan T, Kaya EB, et al: Aortic atherosclerosis predicts the extent and severity of coronary atherosclerosis detected by multidetector computed tomography coronary angiography. Angiology 61:627–632, 2010PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson KM, Dowe DA, Brink JA: Traditional clinical risk assessment tools do not accurately predict coronary atherosclerotic plaque burden: a CT angiography study. AJR Am J Roentgenol 192:235–243, 2009PubMedCrossRefGoogle Scholar
  11. 11.
    Raman R, Raman B, Napel S, Rubin GD: Semiautomated quantification of the mass and distribution of vascular calcification with multidetector CT: method and evaluation. Radiology 247:241–250, 2008PubMedCrossRefGoogle Scholar
  12. 12.
    Sangiorgi G, et al: Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31:126–133, 1998PubMedCrossRefGoogle Scholar
  13. 13.
    Sun J, et al: Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound. AJR Am J Roentgenol 190:748–754, 2008PubMedCrossRefGoogle Scholar
  14. 14.
    Shakeri AB, Tubbs RS, Shoja MM, Ghabili K, Rahimi-Ardabili B, Loukas M: Screening for thoracoabdominal aortic aneurysms in patients with aortoiliac atherosclerosis: a preliminary study. Folia Morphol (Warsz) 67:78–83, 2008Google Scholar
  15. 15.
    Khurma V, et al: A pilot study of subclinical coronary atherosclerosis in systemic sclerosis: coronary artery calcification in cases and controls. Arthritis Rheum 59:591–597, 2008PubMedCrossRefGoogle Scholar
  16. 16.
    Motoyama S, et al: Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging. Circ J 71:363–366, 2007PubMedCrossRefGoogle Scholar
  17. 17.
    Paik DS, Beaulieu CF, Jeffrey RB, Rubin GD, Napel S: Automated flight path planning for virtual endoscopy. Med Phys 25:629–637, 1998PubMedCrossRefGoogle Scholar
  18. 18.
    Raman R, Raman B, Napel S, Rubin GD: Improved speed of bone removal in computed tomographic angiography using automated targeted morphological separation: method and evaluation in computed tomographic angiography of lower extremity occlusive disease. J Comput Assist Tomogr 32:485–491, 2008PubMedCrossRefGoogle Scholar
  19. 19.
    Schuirmann DJ: A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J Pharmacokinet Biopharm 15:657–680, 1987PubMedCrossRefGoogle Scholar
  20. 20.
    Adame IM, van der Geest RJ, Bluemke DA, Lima JA, Reiber JH, Lelieveldt BP: Automatic vessel wall contour detection and quantification of wall thickness in in-vivo MR images of the human aorta. J Magn Reson Imaging 24:595–602, 2006PubMedCrossRefGoogle Scholar
  21. 21.
    Adame IM, de Koning PJ, Lelieveldt BP, Wasserman BA, Reiber JH, van der Geest RJ: An integrated automated analysis method for quantifying vessel stenosis and plaque burden from carotid MRI images: combined postprocessing of MRA and vessel wall MR. Stroke 37:2162–2164, 2006PubMedCrossRefGoogle Scholar
  22. 22.
    Auer M, Stollberger R, Regitnig P, Ebner F, Holzapfel GA: 3-D reconstruction of tissue components for atherosclerotic human arteries using ex vivo high-resolution MRI. IEEE Trans Med Imaging 25:345–357, 2006PubMedCrossRefGoogle Scholar
  23. 23.
    Cardinal MH, Meunier J, Soulez G, Maurice RL, Therasse E, Cloutier G: Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Trans Med Imaging 25:590–601, 2006PubMedCrossRefGoogle Scholar
  24. 24.
    Clarke SE, Beletsky V, Hammond RR, Hegele RA, Rutt BK: Validation of automatically classified magnetic resonance images for carotid plaque compositional analysis. Stroke 37:93–97, 2006PubMedCrossRefGoogle Scholar
  25. 25.
    Desai MY, Lai S, Barmet C, Weiss RG, Stuber M: Reproducibility of 3D free-breathing magnetic resonance coronary vessel wall imaging. Eur Heart J 26:2320–2324, 2005PubMedCrossRefGoogle Scholar
  26. 26.
    Dwyer JH, Sun P, Kwong-Fu H, Dwyer KM, Selzer RH: Automated intima-media thickness: the Los Angeles Atherosclerosis Study. Ultrasound Med Biol 24:981–987, 1998PubMedCrossRefGoogle Scholar
  27. 27.
    Fenster A, Blake C, Gyacskov I, Landry A, Spence JD: 3D ultrasound analysis of carotid plaque volume and surface morphology. Ultrasonics 44(Suppl 1):e153–e157, 2006PubMedCrossRefGoogle Scholar
  28. 28.
    Giannoglou GD, et al: A novel active contour model for fully automated segmentation of intravascular ultrasound images: in vivo validation in human coronary arteries. Comput Biol Med 37:1292–1302, 2007PubMedCrossRefGoogle Scholar
  29. 29.
    Hagenaars T, et al: Progression of atherosclerosis at one-year follow-up seen with volumetric intravascular ultrasound in femoropopliteal arteries. Am J Cardiol 85:226–231, 2000PubMedCrossRefGoogle Scholar
  30. 30.
    Haley AP, et al: Carotid artery intima-media thickness and cognition in cardiovascular disease. Int J Cardiol 121:148–154, 2007PubMedCrossRefGoogle Scholar
  31. 31.
    Heuten H, Goovaerts I, Ennekens G, Vrints C: Carotid artery intima-media thickness is associated with coronary artery disease. Acta Cardiol 63:309–313, 2008PubMedCrossRefGoogle Scholar
  32. 32.
    Kaneda H, Kataoka T, Ako J, Honda Y, Yock PG, Fitzgerald PJ: Coronary risk factors and coronary atheroma burden at severely narrowing segments. Int J Cardiol 124:124–126, 2008PubMedCrossRefGoogle Scholar
  33. 33.
    Kara S, Dirgenali F: Detection of atherosclerosis using autoregressive modelling and principles component analysis to carotid artery Doppler signals. Biomed Mater Eng 16:269–277, 2006PubMedGoogle Scholar
  34. 34.
    Kerwin W, et al: Magnetic resonance imaging of carotid atherosclerosis: plaque analysis. Top Magn Reson Imaging 18:371–378, 2007PubMedCrossRefGoogle Scholar
  35. 35.
    King M, Giger ML, Suzuki K, Pan X: Feature-based characterization of motion-contaminated calcified plaques in cardiac multidetector CT. Med Phys 34:4860–4875, 2007PubMedCrossRefGoogle Scholar
  36. 36.
    King M, et al: Computerized assessment of motion-contaminated calcified plaques in cardiac multidetector CT. Med Phys 34:4876–4889, 2007PubMedCrossRefGoogle Scholar
  37. 37.
    Lilledahl MB, Haugen OA, de Lange Davies C, Svaasand LO: Characterization of vulnerable plaques by multiphoton microscopy. J Biomed Opt 12:044005, 2007PubMedCrossRefGoogle Scholar
  38. 38.
    Mougiakakou SG, Golemati S, Gousias I, Nicolaides AN, Nikita KS: Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, laws’ texture and neural networks. Ultrasound Med Biol 33:26–36, 2007PubMedCrossRefGoogle Scholar
  39. 39.
    Nadkarni SK, Bilenca A, Bouma BE, Tearney GJ: Measurement of fibrous cap thickness in atherosclerotic plaques by spatiotemporal analysis of laser speckle images. J Biomed Opt 11:021006, 2006PubMedCrossRefGoogle Scholar
  40. 40.
    Naqvi TZ: Ultrasound vascular screening for cardiovascular risk assessment. Why, when and how? Minerva Cardioangiol 54:53–67, 2006PubMedGoogle Scholar
  41. 41.
    Ozkan U, Oguzkurt L, Tercan F, Nursal TZ: The prevalence and clinical predictors of incidental atherosclerotic renal artery stenosis. Eur J Radiol 69:550–554, 2007PubMedCrossRefGoogle Scholar
  42. 42.
    Preik M, Lauer T, Heiss C, Tabery S, Strauer BE, Kelm M: Automated ultrasonic measurement of human arteries for the determination of endothelial function. Ultraschall Med 21:195–198, 2000PubMedCrossRefGoogle Scholar
  43. 43.
    Seabra JC, Sanches JM, Pedro LM, Fernandes JF: Carotid plaque 3D compound imaging and echo-morphology analysis: a Bayesian approach. Conf Proc IEEE Eng Med Biol Soc 2007:763–766, 2007PubMedGoogle Scholar
  44. 44.
    Steen H, et al: High-resolution three-dimensional aortic magnetic resonance angiography and quantitative vessel wall characterization of different atherosclerotic stages in a rabbit model. Invest Radiol 42:614–621, 2007PubMedCrossRefGoogle Scholar
  45. 45.
    Stoitsis J, Tsiaparas N, Golemati S, Nikita KS: Characterization of carotid atherosclerotic plaques using frequency-based texture analysis and bootstrap. Conf Proc IEEE Eng Med Biol Soc 1:2392–2395, 2006PubMedCrossRefGoogle Scholar
  46. 46.
    van der Meer FJ, Faber DJ, Baraznji Sassoon DM, Aalders MC, Pasterkamp G, van Leeuwen TG: Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans Med Imaging 24:1369–1376, 2005PubMedCrossRefGoogle Scholar
  47. 47.
    Jadhav UM, Kadam NN: Non-invasive assessment of arterial stiffness by pulse-wave velocity correlates with endothelial dysfunction. Indian Heart J 57:226–232, 2005PubMedGoogle Scholar
  48. 48.
    Shum J, et al: Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med Phys 37:638–648, 2010PubMedCrossRefGoogle Scholar
  49. 49.
    Raman R, Napel S, Beaulieu CF, Bain ES, Jeffrey Jr, RB, Rubin GD: Automated generation of curved planar reformations from volume data: method and evaluation. Radiology 223:275–280, 2002PubMedCrossRefGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2011

Authors and Affiliations

  • Bhargav Raman
    • 1
  • Raghav Raman
    • 1
  • Geoffrey D. Rubin
    • 1
  • Sandy Napel
    • 1
  1. 1.Department of RadiologyStanford University School of MedicineStanfordUSA

Personalised recommendations