Journal of Digital Imaging

, Volume 24, Issue 5, pp 926–942 | Cite as

Development of Subject-Specific Geometric Spine Model through Use of Automated Active Contour Segmentation and Kinematic Constraint-Limited Registration

  • Catherine G. Strickland
  • Daniel E. Aguiar
  • Eric A. Nauman
  • Thomas M. Talavage
Article

Abstract

This paper describes the development of a patient-specific spine model through use of active contour segmentation and registration of intraoperative imaging of porcine vertebra augmented with kinematic constraints. The geometric active contours are fully automated and lead to a discrete representation of the image segmentation results. After determining errors within the segmentations, application of reliability theory allows the selection of active contour parameters to obtain best-fit segmentations from a stack of 2D images. The segmented images are then used in conjunction with C-arm fluoroscope images to simulate the result of intraoperative patient-specific model registration including patient and/or structure motion between preoperative and intraoperative scans. The results are validated through comparison of the error within the patient-specific model generated through use of the C-arm images with a model acquired directly from MRI images of the spine after motion. The results are applicable to the development of a wide variety of patient-specific geometric and biomechanical models.

Key words

Segmentation template geometry patient-specific model spine active contour fluoroscopy kinematic constraints imaging image error registration 

References

  1. 1.
    Kwartowitz DM, Herrell SD, Galloway RL: Toward image-guided robotic surgery: determining intrinsic accuracy of the da Vinci robot. Int J Comput Assist Radiol Surg 1(3):157–165, 2006CrossRefGoogle Scholar
  2. 2.
    Elmore JG, Wells CK, Lee CH, Howard DH, Feinstein AR: Variability in radiologists’ interpretations of mammograms. N Engl J Med 331:1493–1499, 1994PubMedCrossRefGoogle Scholar
  3. 3.
    Kundel H: Reader error, object recognition, and visual search. In Proc 2004 SPIE Conference. SPIE, Bellingham, WA, 2004, pp 1–9Google Scholar
  4. 4.
    Krupinski EA: The future of image perception in radiology: synergy between human and computers. Acad Radiol 10:1–3, 2003PubMedCrossRefGoogle Scholar
  5. 5.
    Manning DJ, Gale A, Krupinski EA: Perception research in medical imaging. Br J Radiol 78:683–685, 2005PubMedCrossRefGoogle Scholar
  6. 6.
    Abbey CK, Barrett HH: Linear iterative reconstruction algorithms: study of observer performance. In Inf Process Med Imaging. SPIE Bellingham. Klower Academic, WA, Dordrecht, 1995, pp 65–76Google Scholar
  7. 7.
    Xu C, Prince JL: Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369, 1998PubMedCrossRefGoogle Scholar
  8. 8.
    Kass M, Witkin A, Terzopoulos D: Snakes: active contour models. Int J Comput Vis 1(4):321–331, 1987CrossRefGoogle Scholar
  9. 9.
    Osher S, Paragios N: Geometric level set methods in imaging vision and graphics, 1st edition. Springer, New York, NY, USA, 2003Google Scholar
  10. 10.
    Malladi R, Sethian JA, Vemuri BC: Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175, 1995CrossRefGoogle Scholar
  11. 11.
    Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson WE, Willsky A: Shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging 22(2):137–154, 2003PubMedCrossRefGoogle Scholar
  12. 12.
    Kirbas C, Quek F: A review of vessel extraction techniques and algorithms. ACM Comput Surv 36(2):81–121, 2004CrossRefGoogle Scholar
  13. 13.
    Suri JS, Setarehdan SK, Singh S Eds: Advanced algorithmic approaches to medical image segmentation: state-of-the-art applications in cardiology, neurology, mammography, and pathology, ch 3. Springer-Verlag London, London, England, UK, 2002, pp 148–161Google Scholar
  14. 14.
    Suri JS: Advanced algorithmic approaches to medical image segmentation: state-of-the-art applications in cardiology, neurology, mammography, and pathology, ch 8, pp 416–421. Springer, London, UK, 2002Google Scholar
  15. 15.
    Pham DL, Xu C, Prince JL: Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337, 2000PubMedCrossRefGoogle Scholar
  16. 16.
    Hill DLG, Batchelor PG, Holden M, Hawkes DJ: Medical image registration. Phys Med Biol 46:R1–R45, 2001PubMedCrossRefGoogle Scholar
  17. 17.
    Hemler PF, Napel S, Sumanaweera TS, Pichumani R, VanDenElsen PA, Martin D, Drace J, Adler JR: Registration error quantification of a surface-based multimodality image fusion system. Med Phys 22(7):1049–1056, 1995PubMedCrossRefGoogle Scholar
  18. 18.
    Maintz JBA, Viergever MA: A survey of medical image registration. Med Image Anal 2(1):1–36, 1998PubMedCrossRefGoogle Scholar
  19. 19.
    Banik S, Rangayyan RM, Boag GS: Automatic segmentation of the ribs, the vertebral column, and the spinal canal in pediatric computed tomographic images. J Dig Img 23(3):301–322, 2010CrossRefGoogle Scholar
  20. 20.
    Siewerdsen JH, Moseley DJ, Burch S, Bisland SK, Bogaards A, Wilson BC, Jaffray DA: Volume ct with a flat-panel detector on a mobile, isocentric C-arm: pre-clinical investigation in guidance of minimally invasive surgery. Med Phys 32(1):241–254, 2005PubMedCrossRefGoogle Scholar
  21. 21.
    Fahrig R, Butts K, Wen Z, Saunders R, Kee ST, Sze DY, Daniel BL, Laerum F, Pelc NJ: Truly hybrid interventional MR/X-Ray system: investigation of in vivo applications. Acad Radiol 8:1200–1207, 2001PubMedCrossRefGoogle Scholar
  22. 22.
    Froelich JJ, El-Sheik M, Wagner HJ, Schenbach S, Scherf C, Klose KJ: Feasibility of C-arm-supported ct fluoroscopy in percutaneous abscess drainage procedures. Cardiovasc Intervent Radiol 23:423–430, 2000PubMedCrossRefGoogle Scholar
  23. 23.
    Mitton D, Zhao K, Bertrand S, Zhao C, Laporte S, Yang C, An KN, Skalli W: 3D reconstruction of the ribs from lateral and frontal X-ray s in comparison to 3D CT-scan reconstruction. J Biomech 41:706–710, 2008PubMedCrossRefGoogle Scholar
  24. 24.
    Templeton A, Cody D, Liebschner M: Updating a 3-D vertebral body finite element model using 2-D images. Med Eng Phys 26(4):329–333, 2004PubMedCrossRefGoogle Scholar
  25. 25.
    Geman S, McClure DE: Bayesian image analysis: an application to single photon emission tomography. In Proc Amer Stat Assoc Statistical Computing Section. 1985, pp 12–18Google Scholar
  26. 26.
    Caselles V, Kimmel R, Sapiro G: Geodesic active contours. Int J Comput Vis 22(1):61–79, 1997CrossRefGoogle Scholar
  27. 27.
    Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A: Gradient flows and geometric active contour models. In Proceedings of the Fifth International Conference on Computer Vision. IEEE Computer Society, Washington, DC, USA, 1995, pp 810–815Google Scholar
  28. 28.
    Hamming RW: Error detecting and error correcting codes. Bell Syst Tech J 26(2):147–160, 1950Google Scholar
  29. 29.
    Cotter SA: A screening design for factorial experiments with interactions. Biometrika 66(2):317–320, 1979CrossRefGoogle Scholar
  30. 30.
    McKay MD, Beckman RJ, Conover WJ: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245, 1979CrossRefGoogle Scholar
  31. 31.
    Nocedal J, Wright SJ: Numerical optimization. Springer series in operations research. Springer, New York, NY, USA, 1999, pp 53–55Google Scholar
  32. 32.
    Yezzi A, Kichenassamy S, Kumar A, Olver P, Tannenbaum A: A geometric snake model for segmentation of medical imagery. IEEE Trans Med Imaging 16(2):199–209, 1997PubMedCrossRefGoogle Scholar
  33. 33.
    Udupa JK, Herman GT Eds: 3D imaging in medicine, ch 1, 2nd edition. CRC Press LLC, Boca Raton, FL, USA, 2002, pp 1–67Google Scholar
  34. 34.
    Sapiro G: Geometric partial differential equations and image analysis, ch 1. Cambridge University Press, New York, NY, USA, 2001, pp 44–63CrossRefGoogle Scholar
  35. 35.
    Epstein CL, Gage M: Wave motion: theory, modeling, and computation, v 7 of Math Sci Res Inst Publ, ch 2. Springer, New York, NY, USA, 1987, pp 15–59Google Scholar
  36. 36.
    Osher SJ, Sethian JA: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49, 1988CrossRefGoogle Scholar
  37. 37.
    Boyer CB: A history of mathematics, 2nd edition. New York, NY, USA: Wiley, 1991, Revised by Uta C. MerzbachGoogle Scholar
  38. 38.
    Li C, Xu C, Gui C, Fox MD: Level set evolution without re-initialization: a new variational approach. In Proceedings of the 2005 IEEE Computer Society International Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, Washington, DC, USA, 2005, pp 430–436Google Scholar
  39. 39.
    Wade JA: An investigation of ovine lumbar kinematics using the Purdue spine simulator. Master’s thesis. School of Mechanical Engineering, Purdue University, West Lafayette, 2005Google Scholar
  40. 40.
    Wilke HJ, Kettler A, Claes LE: Are sheep spines a valid biomechanical model for human spines? Spine 22(20):2365–2374, 1997PubMedCrossRefGoogle Scholar
  41. 41.
    Ryan TP Ed.: Modern experimental design. Wiley series in probability and statistics. Wiley-Interscience, Hoboken, NJ, USA, 2007Google Scholar
  42. 42.
    Owen AB: A central limit theorem for latin hypercube sampling. J R Stat Soc 54:541–551, 1992Google Scholar
  43. 43.
    Loh WL: On latin hypercube sampling. The Annals of Statistics 24:2058–2080, 1996CrossRefGoogle Scholar
  44. 44.
    Iman RL, Helton JC: The repeatability of uncertainty and sensitivity analyses for complex probabilistic risk assessments. Risk Anal 11:591–606, 1991CrossRefGoogle Scholar
  45. 45.
    Zurada JM, Malinowski A, Usui S: Perturbation method for deleting redundant inputs of perceptron networks, 1997Google Scholar
  46. 46.
    Pannell DJ: Sensitivity analysis of normative economic models: theoretical framework and practical strategies. Agric Econ 16(2):139–152, 1997CrossRefGoogle Scholar
  47. 47.
    Galle B: Development of a mechanical spine simulator and determination of lumbar kinematics. Master’s thesis. School of Mechanical Engineering, Purdue University, West Lafayette, 2005Google Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2010

Authors and Affiliations

  • Catherine G. Strickland
    • 1
  • Daniel E. Aguiar
    • 1
  • Eric A. Nauman
    • 2
    • 3
    • 4
  • Thomas M. Talavage
    • 1
    • 3
  1. 1.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.Department of Basic Medical SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations