Journal of Digital Imaging

, Volume 24, Issue 3, pp 485–493 | Cite as

Retrospective Evaluation of PET-MRI Registration Algorithms

  • Zuyao Y. Shan
  • Sara J. Mateja
  • Wilburn E. Reddick
  • John O. Glass
  • Barry L. Shulkin


The purpose of this study is to evaluate the accuracy of registration positron emission tomography (PET) head images to the MRI-based brain atlas. The [18F]fluoro-2-deoxyglucose PET images were normalized to the MRI-based brain atlas using nine registration algorithms including objective functions of ratio image uniformity (RIU), normalized mutual information (NMI), and normalized cross correlation (CC) and transformation models of rigid-body, linear, affine, and nonlinear transformations. The accuracy of normalization was evaluated by visual inspection and quantified by the gray matter (GM) concordance between normalized PET images and the brain atlas. The linear and affine registration based on the RIU provided the best GM concordance (average similarity index of 0.71 for both). We also observed that the GM concordances of linear and affine registration were higher than those of the rigid and nonlinear registration among the methods evaluated.

Key words

Normalization PET MR brain tissue concordance 


  1. 1.
    Carson RE, Daube-Witherspoon ME, Herscovitch P: Quantitative Functional Brain Imaging With Postron Emission Tomography. Academic Press, San Diego, CA 92101, 1998Google Scholar
  2. 2.
    Phelps ME: PET: Molecular Imaging and Its Biological Applications. Springer, New York, NY, 2004Google Scholar
  3. 3.
    Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE: Tomographic measurement of local cerebral glucose metabolic-rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose—validation of method. Ann Neurol 6:371–388, 1979PubMedCrossRefGoogle Scholar
  4. 4.
    Toga AW, Thompson PM, Mori S, Amunts K, Zilles K: Towards multimodal atlases of the human brain. Nat Rev Neurosci 7:952–966, 2006PubMedCrossRefGoogle Scholar
  5. 5.
    Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen CT: Accurate 3-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 13:20–26, 1989PubMedCrossRefGoogle Scholar
  6. 6.
    Besl PJ, Mckay ND: A method for registration of 3-D Shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256, 1992CrossRefGoogle Scholar
  7. 7.
    Xue Z, Shen DG, Davatzikos C: Correspondence detection using wavelet-based attribute vectors. Med Image Comput Comput Assist Interv—MICCAI 2003, Pt 2 2879:762–770, 2003CrossRefGoogle Scholar
  8. 8.
    Lemieux L, Kitchen ND, Hughes SW, Thomas DGT: Voxel-based localization in frame-based and frameless stereotaxy and its accuracy. Med Phys 21:1301–1310, 1994PubMedCrossRefGoogle Scholar
  9. 9.
    Hajnal JV, Saeed N, Oatridge A, Williams EJ, Young IR, Bydder GM: Detection of subtle brain changes using subvoxel registration and subtraction of serial MR-images. J Comput Assist Tomogr 19:677–691, 1995PubMedCrossRefGoogle Scholar
  10. 10.
    Woods RP, Grafton ST, Watson JDG, Sicotte NL, Mazziotta JC: Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22:153–165, 1998PubMedCrossRefGoogle Scholar
  11. 11.
    Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC: Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152, 1998PubMedCrossRefGoogle Scholar
  12. 12.
    Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P: Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198, 1997PubMedCrossRefGoogle Scholar
  13. 13.
    Gan R, Wu J, Chung ACS, Yu SCH, Wells WM: Multiresolution image registration based on Kullback–Leibler distance. Med Image Comput Comput Assist Interv—MICCAI 2004, Pt 1, Proceedings 3216:599–606, 2004CrossRefGoogle Scholar
  14. 14.
    Gholipour A, Kehtarnavaz N, Briggs R, Devous M, Gopinath K: Brain functional localization: A survey of image registration techniques. IEEE Trans Med Imaging 26:427–451, 2007PubMedCrossRefGoogle Scholar
  15. 15.
    West J, Fitzpatrick JM, Wang MY, Dawant BM, Maurer CR, Kessler RM, Maciunas RJ, Barillot C, Lemoine D, Collignon A, Maes F, Suetens P, Vandermeulen D, vandenElsen PA, Napel S, Sumanaweera TS, Harkness B, Hemler PF, Hill DLG, Hawkes DJ, Studholme C, Maintz JBA, Viergever MA, Malandain G, Pennec X, Noz ME, Maguire GQ, Pollack M, Pelizzari CA, Robb RA, Hanson D, Woods RP: Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 21:554–566, 1997PubMedCrossRefGoogle Scholar
  16. 16.
    Koole M, D'Asseler Y, Van Laere K, Van de Walle R, Van de Wiele C, Lemahieu I, Dierckx RA: MRI-SPET and SPET-SPET brain co-registration: Evaluation of the performance of eight different algorithms. Nucl Med Commun 20:659–669, 1999PubMedCrossRefGoogle Scholar
  17. 17.
    Kiebel SJ, Ashburner J, Poline JB, Friston KJ: MRI and PET coregistration—A cross validation of statistical parametric mapping and automated image registration. Neuroimage 5:271–279, 1997PubMedCrossRefGoogle Scholar
  18. 18.
    Noblet V, Heinrich C, Heitz F, Armspach JP: Retrospective evaluation of a topology preserving non-rigid registration method. Med Image Anal 10:366–384, 2006PubMedCrossRefGoogle Scholar
  19. 19.
    Crum WR, Rueckert D, Jenkinson M, Kennedy D, Smith SM: A framework for detailed objective comparison of non-rigid registration algorithms in neuroimaging. Med Image Comput Comput Assist Interv—MICCAI 2004, Pt 1, Proceedings 3216:679–686, 2004CrossRefGoogle Scholar
  20. 20.
    Grachev ID, Berdichevsky D, Rauch SL, Heckers S, Kennedy DN, Caviness VS, Alpert NM: A method for assessing the accuracy of intersubject registration of the human brain using anatomic landmarks. Neuroimage 9:250–268, 1999PubMedCrossRefGoogle Scholar
  21. 21.
    Dinov ID, Mega MS, Thompson PM, Woods RP, Sumners DL, Sowell EL, Toga AW: Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage. IEEE Trans Inf Technol Biomed 6:73–85, 2002PubMedCrossRefGoogle Scholar
  22. 22.
    Woods RP, Mazziotta JC, Cherry SR: MRI-PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546, 1993PubMedCrossRefGoogle Scholar
  23. 23.
    Woods RP, Cherry SR, Mazziotta JC: Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16:620–633, 1992PubMedCrossRefGoogle Scholar
  24. 24.
    Pham DL, Prince JL: An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recogn Lett 20:57–68, 1999CrossRefGoogle Scholar
  25. 25.
    Studholme C, Hill DLG, Hawkes DJ: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recogn 32:71–86, 1999CrossRefGoogle Scholar
  26. 26.
    Crum WR, Hartkens T, Hill DLG: Non-rigid image registration: Theory and practice. Br J Radiol 77:S140–S153, 2004PubMedCrossRefGoogle Scholar
  27. 27.
    Hajnal JV, Hill DLG, Hawkes DJ: Medical Image Registration. CRC Press, New York, 2001CrossRefGoogle Scholar
  28. 28.
    Hatt M, le Rest CC, Turzo A, Roux C, Visvikis D: A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28:881–893, 2009PubMedCrossRefGoogle Scholar
  29. 29.
    Strother SC, Anderson JR, Xu XL, Liow JS, Bonar DC, Rottenberg DA: Quantitative comparisons of image registration techniques based on high-resolution MRI of the brain. J Comput Assist Tomogr 18:954–962, 1994PubMedCrossRefGoogle Scholar
  30. 30.
    West J, Fitzpatrick JM, Wang MY, Dawant BM, Maurer CR, Kessler RM, Maciunas RJ: Retrospective intermodality registration techniques for images of the head: Surface-based versus volume-based. IEEE Trans Med Imaging 18:144–150, 1999PubMedCrossRefGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2010

Authors and Affiliations

  • Zuyao Y. Shan
    • 1
  • Sara J. Mateja
    • 2
  • Wilburn E. Reddick
    • 1
  • John O. Glass
    • 1
  • Barry L. Shulkin
    • 3
  1. 1.Division of Translational Imaging Research, Department of Radiological SciencesMS 212, St. Jude Children’s Research HospitalMemphisUSA
  2. 2.Eckerd CollegeSt. PetersburgUSA
  3. 3.Division of Nuclear Medicine, Department of Radiological SciencesSt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations