Journal of Digital Imaging

, Volume 24, Issue 3, pp 528–540 | Cite as

Security Protection of DICOM Medical Images Using Dual-Layer Reversible Watermarking with Tamper Detection Capability

  • Chun Kiat Tan
  • Jason Changwei Ng
  • Xiaotian Xu
  • Chueh Loo Poh
  • Yong Liang Guan
  • Kenneth Sheah
Article

Abstract

Teleradiology applications and universal availability of patient records using web-based technology are rapidly gaining importance. Consequently, digital medical image security has become an important issue when images and their pertinent patient information are transmitted across public networks, such as the Internet. Health mandates such as the Health Insurance Portability and Accountability Act require healthcare providers to adhere to security measures in order to protect sensitive patient information. This paper presents a fully reversible, dual-layer watermarking scheme with tamper detection capability for medical images. The scheme utilizes concepts of public-key cryptography and reversible data-hiding technique. The scheme was tested using medical images in DICOM format. The results show that the scheme is able to ensure image authenticity and integrity, and to locate tampered regions in the images.

Key words

Digital watermark security image authentication teleradiology public-key cryptography 

References

  1. 1.
    The Health Insurance Portability and Accountability Act (HIPAA), March 2009. [Online]. Available at: http://www.hhs.gov/ocr/privacy/index.html
  2. 2.
    Digital Imaging and Communications in Medicine (DICOM), part 15: security profiles ed., National Electrical Manufacturers Association (NEMA), 2001, pS 3.15–2001Google Scholar
  3. 3.
    Coatrieux G, Maitre H, Sankur B, Rolland Y, Collorec R: Relevance of watermarking in medical imaging. Proc IEEE EMBS Information Technology Applications in Biomedicine. Arlington, VA 2000, pp 250–255Google Scholar
  4. 4.
    Zain JM, Fauzi AM, Aziz AA: Clinical evaluation of watermarked medical images. Proc EMBS 28th Annual International Conference of the IEEE 5459–5462, New York, USA, August 30–Sept. 3, 2006Google Scholar
  5. 5.
    Wang XY, Feng DG, Lai XJ, Yu HB: Collisions for hash functions MD4, MD5 HAVAL-128 and RIPEMD. Rump session of Crypto’04 and IACR Eprint archive, 2004Google Scholar
  6. 6.
    Kaminsky D: MD5 to be considered harmful someday CryptologyePrint Archive, 2004Google Scholar
  7. 7.
    Coatrieux G, Lamard M, Daccache W, Puentes W, Roux C: A low distortion and reversible watermark: application to angiographic images of the retina. Proc IEEE-EMBS Eng in Med Biol Soc 2224–2227, 2005Google Scholar
  8. 8.
    Miller ML, Cox IJ, Linnartz JPMG, and Kalker T: A review of watermarking principles and practices. Digital Signal Processing for Multimedia Systems, IEEE 461–485, 1999Google Scholar
  9. 9.
    Zhou XQ, Huang HK, Lou SL: Authenticity and integrity of digital mammography images. IEEE Trans Med Imag 20(8):784–791, 2001CrossRefGoogle Scholar
  10. 10.
    Macq B and Dewey F: Trusted headers for medical images. DFG VIII-DII Watermarking Workshop, Erlangen, Germany, 1999Google Scholar
  11. 11.
    Guo X, Zhuang TG: Lossless watermarking for verifying the integrity of medical images with tamper localization. J Digit Imaging 2008Google Scholar
  12. 12.
    Guo X, Zhuang TG: A region-based lossless watermarking scheme for enhancing security of medical data. J Digit Imaging 22(1):53–64, 2009PubMedCrossRefGoogle Scholar
  13. 13.
    Wu JHK, Chang RF, Chen CJ, Wang CL, Kuo TH, Moon WK, Chen DR: Tamper detection and recovery for medical images using near-lossless information hiding technique. J Digit Imaging 21(1):59–76, 2008PubMedCrossRefGoogle Scholar
  14. 14.
    Vleeschouwer CD, Delaigle J-F, Macq B: Circular interpretation of bijective transformations in lossless watermarking for media asset management. Multimedia, IEEE Transactions on 5(1):97–105, 2003Google Scholar
  15. 15.
    Fridrich J, Goljan M, Du R: Lossless data embedding—new paradigm in digital watermarking. EURASIP J Applied Signal Processing 2002(2):185–196, 2002CrossRefGoogle Scholar
  16. 16.
    Diffie W, Hellman M: New directions in cryptography. IEEE Trans Inf Theory 22:644–654, 1976CrossRefGoogle Scholar
  17. 17.
    Rivest RL, Shamir A, Adleman L: A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21:120–126, 1978CrossRefGoogle Scholar
  18. 18.
    Rajatasereekul T, Kiettrisalpipop V: RSA encryption and decryption using matlab. ECE575 project, Oregon State University, 2002. [Online]. Available: http://islab.oregonstate.edu/koc/ece575/02Project/Kie+Raj/
  19. 19.
    Osirix Image Navigation Software Sample Datasets—available at: http://pubimage.hcuge.ch:8080/
  20. 20.
    ImageJ, Available at: http://rsbweb.nih.gov/ij/
  21. 21.
    Cao F, Huang HK, Zhou XQ: Medical image security in a HIPAA mandated PACS environment. Comput Med Imaging Graph 27:185–196, 2003PubMedCrossRefGoogle Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2010

Authors and Affiliations

  • Chun Kiat Tan
    • 1
  • Jason Changwei Ng
    • 1
  • Xiaotian Xu
    • 1
  • Chueh Loo Poh
    • 2
  • Yong Liang Guan
    • 1
  • Kenneth Sheah
    • 3
  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of Diagnostic RadiologyChangi General HospitalSingaporeSingapore

Personalised recommendations