Journal of Digital Imaging

, Volume 24, Issue 1, pp 58–65 | Cite as

Contrast Detail Phantom Comparison on a Commercially Available Unit. Digital Breast Tomosynthesis (DBT) versus Full-Field Digital Mammography (FFDM)

  • Marco Bertolini
  • Andrea Nitrosi
  • Giovanni Borasi
  • Andrea Botti
  • Davide Tassoni
  • Roberto Sghedoni
  • Giulio Zuccoli
Article

Abstract

The performance of a commercial digital mammographic system working in 2D planar versus tomosynthesis mode was evaluated in terms of the image signal difference to noise ratio (SDNR). A contrast detail phantom was obtained embedding 1 cm Plexiglas, including 49 holes of different diameter and depth, between two layers containing a breast-simulating material. The phantom was exposed with the details plane perpendicular to the X-ray beam using the manufacturer’s standard clinical breast acquisition parameters. SDNR in the digital breast tomosynthesis (DBT) images was higher than that of the full-field digital mammography (FFDM) for 38 out of 49 details in complex background conditions. These differences (p < 0.05) are statistically significant for 19 details out of 38. The relative SDNR results for DBT and FFDM images showed a dependence on the diameter of the details considered. This paper proposes an initial framework for a global image quality evaluation for commercial systems that can operate with different image acquisition modality using the same detector.

Key words

Digital mammography full-field digital mammography (FFDM) image quality analysis digital breast tomosynthesis phantoms imaging contrast detail phantom analysis 

References

  1. 1.
    U.S. Food and Drug Administration: MQSA National Statistics Archive. http://www.fda.gov/cdrh/mammography/archives/0108
  2. 2.
    Yaffe MJ, Mainprize JG, Jong RA: Technical developments in mammography. Health Phys 95:599–611, 2008CrossRefPubMedGoogle Scholar
  3. 3.
    Nitrosi A, Borasi G, Nicoli F, Modigliani G, Botti A, Bertolini M, Notari P: A filmless radiology department in a full digital regional hospital: quantitative evaluation of the increased quality and efficiency. J Digit Imaging 20:140–148, 2007CrossRefPubMedGoogle Scholar
  4. 4.
    Saunders Jr, RS, Samei E, Jesneck JL, Lo JY: Physical characterization of a prototype selenium-based full field digital mammography detector. Med Phys 32:588–599, 2005CrossRefPubMedGoogle Scholar
  5. 5.
    Vedantham S, Karellas A, Suryanarayanan S, Albagli D, Han S, Tkaczyk EJ, Landberg CE, Opsahl-Ong B, Granfors PR, Levis I, D’Orsi CJ, Hendrick RE: Full breast digital mammography with an amorphous silicon-based flat panel detector: physical characteristics of a clinical prototype. Med Phys 27:558–567, 2000CrossRefPubMedGoogle Scholar
  6. 6.
    Ghetti C, Borrini A, Ortenzia O, Rossi R, Ordóñez PL: Physical characteristics of GE Senographe Essential and DS digital mammography detectors. Med Phys 35:456–462, 2008CrossRefPubMedGoogle Scholar
  7. 7.
    Suryanarayanan S, Karellas A, Vedantham S: Physical characteristics of a full-field digital mammography system. Nucl Instrum Methods Phys Res A 533:560–570, 2004Google Scholar
  8. 8.
    Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Conant EF, Fajardo LL, Bassett L, D’Orsi C, Jong R, Rebner M: Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353:1773–1783, 2005CrossRefPubMedGoogle Scholar
  9. 9.
    Skaane P, Hofvind S, Skjennald A: Randomized trial of screenfilm versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up and final results of Oslo, II study. Radiology 244:708–717, 2007CrossRefPubMedGoogle Scholar
  10. 10.
    Ruschin M, Timberg P, Båth M, Hemdal B, Svahn T, Saunders RS, Samei E, Andersson I, Mattsson S, Chakrabort DP, Tingber AM: Dose dependence of mass and microcalcification detection in digital mammography: free response human observer studies. Med Phys 34:400–407, 2007CrossRefPubMedGoogle Scholar
  11. 11.
    Burgess AE, Jacobson FL, Judy PF: Human observer detection experiments with mammograms and power-law noise. Med Phys 28:419–437, 2001CrossRefPubMedGoogle Scholar
  12. 12.
    Niklason LT, Christian BT, Niklason LE, Kopans DB, Castleberry DE, Opsahl-Ong BH, Landberg CE, Slanetz PJ, Giardino AA, Moore R, Albagli D, DeJule MC, Fitzgerald PF, Fobare DF, Giambattista BW, Kwasnick RF, Liu J, Lubowski SJ, Possin GE, Richotte JF, Wei CY, Wirth RF: Digital tomosynthesis in breast imaging. Radiology 205:399–406, 1997PubMedGoogle Scholar
  13. 13.
    Wu T, Stewart A, Stanton M, McCauley T, Phillips W, Kopans DB, Moore RH, Eberhard JW, Opsahl-Ong B, Niklason L, Williams MB: Tomographic mammography using a limited number of low-dose cone-beam projection images. Med Phys 30:365–380, 2003CrossRefPubMedGoogle Scholar
  14. 14.
    Wu T, Moore RH, Rafferty EA, Kopans DB: A comparison of reconstruction algorithms for breast tomosynthesis. Med Phys 31:2636–2647, 2004CrossRefPubMedGoogle Scholar
  15. 15.
    Wu T, Moore RH, Kopans DB: Voting strategy for artifact reduction in digital breast tomosynthesis. Med Phys 33:2461–2471, 2006CrossRefPubMedGoogle Scholar
  16. 16.
    Andersson I, Ikeda DM, Zackrisson S, Ruschin M, Svahn T, Timberg P, Tingberg A: Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. Eur Radiol 18:2817–2825, 2008CrossRefPubMedGoogle Scholar
  17. 17.
    Suryanarayanan S, Karellas A, Vedantham S, Glick SJ, D’Orsi CJ, Baker SP, Webber RL: Comparison of tomosynthesis methods used with digital mammography. Acad Radiol 7:1085–1097, 2000CrossRefPubMedGoogle Scholar
  18. 18.
    Diekmann F, Meyer H, Diekmann S, Puong S, Muller S, Bick U, and Rogalla P. Thick slices from tomosynthesis data sets: phantom study for the evaluation of different algorithms. J Digit Imaging 22:519–526, 2009Google Scholar
  19. 19.
    Diekmann F, Bick U: Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography. Eur Radiol 17:3086–3092, 2007CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang Y, Chan HP, Sahiner B, Wei J, Goodsitt MM, Hadjiiski LM, Ge J, Zhou C: A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis. Med Phys 33:3781–3795, 2006CrossRefPubMedGoogle Scholar
  21. 21.
    Rakowski JT, Dennis MJ: A comparison of reconstruction algorithms for C-arm mammography tomosynthesis. Med Phys 33:3018–3032, 2006CrossRefPubMedGoogle Scholar
  22. 22.
  23. 23.
    European Guidelines for Quality Assurance in Breast Cancer screening and Diagnosis, 4th edition. Luxembourg: CEC, 2006Google Scholar
  24. 24.
    Park JM, Franken Jr, EA, Garg M, Fajardo LL, Niklason LT: Breast tomosynthesis: present considerations and future applications. RadioGraphics 27:S231–S240, 2007CrossRefPubMedGoogle Scholar
  25. 25.
    Saunders Jr, RS, Samei E: The effect of breast compression on mass conspicuity in digital mammography. Med Phys 35:4464–4473, 2008CrossRefPubMedGoogle Scholar
  26. 26.
    Chida K, Komatsu Y, Sai M, Nakagami A, Yamada T, Yamashita T, Mori I, Ishibashi T, Maruoka S, Zuguchi M: Reduced compression mammography to reduce breast pain. Clin Imaging 33:7–10, 2009CrossRefPubMedGoogle Scholar
  27. 27.
    Toroi P, Zanca F, Young KC, van Ongeval C, Marchal G, Bosmans H: Experimental investigation on the choice of the tungsten/rhodium anode/filter combination for an amorphous selenium-based digital mammography system. Eur Radiol 17:2368–2375, 2007CrossRefPubMedGoogle Scholar
  28. 28.
    Borasi G, Nitrosi A, Ferrari P, Tassoni D: On site evaluation of three flat panel detectors for digital radiography. Med Phys 30:1719–1731, 2003CrossRefPubMedGoogle Scholar
  29. 29.
    Borasi G, Samei E, Bertolini M, Nitrosi A, Tassoni D: Contrast-detail analysis of three flat panel detectors for digital radiography. Med Phys 33:1707–1719, 2006CrossRefGoogle Scholar
  30. 30.
    Rivetti S, Lanconelli N, Campanini R, Bertolini M, Borasi G, Nitrosi A, Danielli C, Angelini L, Maggi S: Comparison of different commercial FFDM units by means of physical characterization and contrast-detail analysis. Med Phys 33:4198–4209, 2006CrossRefPubMedGoogle Scholar
  31. 31.
    Samei E, Dobbins III, JT, Lo JY, Tornai MP: A framework for optimising the radiographic technique in digital x-ray imaging. Radiat Prot Dosim 114:220–229, 2005CrossRefGoogle Scholar
  32. 32.
    Tapiovaara MJ, Wagner RF: SNR and noise measurements for medical imaging: I. A practical approach based on statistical decision theory. Phys Med Biol 38:71–92, 1993CrossRefPubMedGoogle Scholar
  33. 33.
    Siegel S: Nonparametric Statistical Methods for the Behavioral Sciences, New York: McGraw-Hill, 1956Google Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2010

Authors and Affiliations

  • Marco Bertolini
    • 1
  • Andrea Nitrosi
    • 1
  • Giovanni Borasi
    • 1
  • Andrea Botti
    • 1
  • Davide Tassoni
    • 1
  • Roberto Sghedoni
    • 1
  • Giulio Zuccoli
    • 2
  1. 1.Servizio di Fisica Medica SanitariaAzienda Ospedaliera S. Maria NuovaReggio EmiliaItaly
  2. 2.University of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations