Journal of Digital Imaging

, Volume 23, Issue 5, pp 527–537 | Cite as

A Statistical Approach for Breast Density Segmentation

  • Arnau Oliver
  • Xavier Lladó
  • Elsa Pérez
  • Josep Pont
  • Erika R. E. Denton
  • Jordi Freixenet
  • Joan Martí


Studies reported in the literature indicate that the increase in the breast density is one of the strongest indicators of developing breast cancer. In this paper, we present an approach to automatically evaluate the density of a breast by segmenting its internal parenchyma in either fatty or dense class. Our approach is based on a statistical analysis of each pixel neighbourhood for modelling both tissue types. Therefore, we provide connected density clusters taking the spatial information of the breast into account. With the aim of showing the robustness of our approach, the experiments are performed using two different databases: the well-known Mammographic Image Analysis Society digitised database and a new full-field digital database of mammograms from which we have annotations provided by radiologists. Quantitative and qualitative results show that our approach is able to correctly detect dense breasts, segmenting the tissue type accordingly.

Key words

Breast tissue density statistic analysis image segmentation computerized method 



This work was supported by the Ministerio de Educación y Ciencia of Spain under Grant TIN2007-60553, by the UdG under Grant IdIBGi-UdG and by CIRIT and CUR of DIUiE of Generalitat de Catalunya under Grant 2008SALUT00029.


  1. 1.
    American Cancer Society: Breast Cancer: Facts and Figures, 2003–04. Atlanta: ACS, 2003Google Scholar
  2. 2.
    Australian Institute of Health and Welfare & National Breast Cancer Centre: Breast cancer in Australia: an overview. Cancer series. Canberra: AIHW, 2006, p. 34Google Scholar
  3. 3.
    R2 ImageChecker. Accessed 1 January 2007
  4. 4.
    iCAD Second Look. Accessed 1 January 2007
  5. 5.
    Ho WT, Lam PWT: Clinical performance of computer-assisted detection (CAD) system in detecting carcinoma in breasts of different densities. Clin Radiol 58:133–136, 2003CrossRefPubMedGoogle Scholar
  6. 6.
    Obenauer S, Sohns C, Werner C, Grabbe E: Impact of breast density on computer-aided detection in full-field digital mammography. J Digit Imaging 19(3):258–263, 2006CrossRefPubMedGoogle Scholar
  7. 7.
    Brem RF, Hoffmeister JW, Rapelyea JA, Zisman G, Mohtashemi K, Jindal G, DiSimio MP, Rogers SK: Impact of breast density on computer-aided detection for breast cancer. Am J Roentgenol 184(2):439–444, 2005Google Scholar
  8. 8.
    Wolfe JN: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37:2486–2492, 1976CrossRefPubMedGoogle Scholar
  9. 9.
    Freixenet J, Oliver A, Martí R, Lladó X, Pont J, Pérez E, Denton ERE, Zwiggelaar R: Eigendetection of masses considering false positive reduction and breast density information. Med Phys 35(5):1840–1853, 2008CrossRefPubMedGoogle Scholar
  10. 10.
    Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ: Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian national breast screening study. J Natl Cancer Inst 87:670–675, 1995CrossRefPubMedGoogle Scholar
  11. 11.
    Sivaramakrishna R, Obuchowski NA, Chilcote WA, Powell KA: Automatic segmentation of mammographic density. Acad Radiol 8(3):250–256, 2001CrossRefPubMedGoogle Scholar
  12. 12.
    Ferrari RJ, Rangayyan RM, Borges RA, Frere AF: Segmentation of the fibro-glandular disc in mammograms via Gaussian mixture modelling. Med Biol Eng Comput 42:378–387, 2004CrossRefPubMedGoogle Scholar
  13. 13.
    Aylward SR, Hemminger BH, Pisano ED: Mixture modelling for digital mammogram display and analysis. Int Work Dig Mammography 305–312, 1998Google Scholar
  14. 14.
    Saha PK, Udupa JK, Conant EF, Chakraborty P, Sullivan D: Breast tissue density quantification via digitized mammograms. IEEE Trans Med Imag 20(8):792–803, 2001CrossRefGoogle Scholar
  15. 15.
    Zwiggelaar R, Denton ERE: Optimal segmentation of mammographic images. In Int Work Dig Mammography 751–757, 2004Google Scholar
  16. 16.
    Petroudi S, Brady M: Breast density segmentation using texture. Lect Not Comp Sc 4046:609–615, 2006CrossRefGoogle Scholar
  17. 17.
    Suckling J, Parker J, Dance DR, Astley SM, Hutt I, Boggis CRM, Ricketts I, Stamatakis E, Cerneaz N, Kok SL, Taylor P, Betal D, Savage J: The Mammographic Image Analysis Society digital mammogram database. Int Work Dig Mammography 211–221, 1994Google Scholar
  18. 18.
    Martí R, Oliver A, Raba D, Freixenet J: Breast skin-line segmentation using contour growing. In Lect Not Comp Sc 4478:564–571, 2007CrossRefGoogle Scholar
  19. 19.
    Kwok SM, Chandrasekhar R, Attikiouzel Y, Rickard MT: Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Trans Med Imag 23(9):1129–1140, 2004CrossRefGoogle Scholar
  20. 20.
    Turk MA, Pentland AP: Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86, 1991CrossRefGoogle Scholar
  21. 21.
    Belhumeur PN, Hespanha JP, Kriegman DJ: Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intel 19(7):711–720, 1997CrossRefGoogle Scholar
  22. 22.
    Dice LR: Measures of the amount of ecologic association between species. Ecology 26:297–302, 1945CrossRefGoogle Scholar
  23. 23.
    McGill R, Tukey JW, Larsen WA: Variation of boxplots. Am Stat 32:12–16, 1978CrossRefGoogle Scholar
  24. 24.
    Snoeren PR, Karssemeijer N: Gray-scale and geometric registration of full-field digital and film-screen mammograms. Med Image Anal 11(2):146–156, 2007CrossRefPubMedGoogle Scholar
  25. 25.
    Pun T: Entropy thresholding: a new approach. Comput Vis Graph Image Process 16:210–239, 1981CrossRefGoogle Scholar
  26. 26.
    Ridler TW, Calvard S: Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8(8):629–632, 1978Google Scholar
  27. 27.
    Kopans D: Breast Imaging, Philadelphia: Lippincott-Raven, 1998Google Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2009

Authors and Affiliations

  • Arnau Oliver
    • 1
  • Xavier Lladó
    • 1
  • Elsa Pérez
    • 2
  • Josep Pont
    • 2
  • Erika R. E. Denton
    • 3
  • Jordi Freixenet
    • 1
  • Joan Martí
    • 1
  1. 1.Department of Computer Architecture and Technology, IIiA-IdIBGiUniversity of GironaGironaSpain
  2. 2.Department of RadiologyUniversity Hospital Josep TruetaGironaSpain
  3. 3.Department of Breast ImagingNorfolk and Norwich University Hospital NHS TrustNorwichUK

Personalised recommendations