Journal of Digital Imaging

, Volume 22, Issue 5, pp 548–557 | Cite as

Detecting Stripe Artifacts in Ultrasound Images

  • Adam Maciak
  • Christian Kier
  • Günter Seidel
  • Karsten Meyer-Wiethe
  • Ulrich G. Hofmann


Brain perfusion diseases such as acute ischemic stroke are detectable through computed tomography (CT)-/magnetic resonance imaging (MRI)-based methods. An alternative approach makes use of ultrasound imaging. In this low-cost bedside method, noise and artifacts degrade the imaging process. Especially stripe artifacts show a similar signal behavior compared to acute stroke or brain perfusion diseases. This document describes how stripe artifacts can be detected and eliminated in ultrasound images obtained through harmonic imaging (HI). On the basis of this new method, both proper identification of areas with critically reduced brain tissue perfusion and classification between brain perfusion defects and ultrasound stripe artifacts are made possible.

Key words

Ultrasound stripe artifacts moments artifact segmentation harmonic imaging perfusion stroke 



The authors would like to thank Toni W. Vomweg and Sarah M. Hilbert, CADMEI GmbH, Germany, for their assistance and valuable input.


  1. 1.
    Burns, PN: Harmonic imaging with ultrasound contrast agents. Clin Radiol 51:50, 1996PubMedGoogle Scholar
  2. 2.
    De Jong N, Frinking PJ, Bouakaz A: Detection procedures of ultrasound contrast agents. Ultrasonics 38:87–92, 2000PubMedCrossRefGoogle Scholar
  3. 3.
    Harrer J: Second harmonic imaging of the human brain. Stroke 33(1):1530–1536, 2002PubMedCrossRefGoogle Scholar
  4. 4.
    Liu Y: Cerebral hemodynamics in human acute ischemic stroke: a study with diffusion- and perfusion-weighted magnetic resonance imaging and SPECT. J Cereb Blood Flow Metab 20: 910–920, 2000PubMedCrossRefGoogle Scholar
  5. 5.
    Meves S, Wilkening W, Thies T, Eyding J, Ermert HTP: Comparison between echo contrast agent-specific imaging modes and perfusion-weighted magnetic resonance imaging for assessment of brain perfusion. Stroke 33(1):2433–2437, 2002PubMedCrossRefGoogle Scholar
  6. 6.
    Eyding J, Postert T, Wilkening W: Brain perfusion and ultrasonic imaging techniques. Eur J Ultrasound 16:91–104, 2002PubMedCrossRefGoogle Scholar
  7. 7.
    Eyding J, Wilkening W, Reckhard M: Contrast burst depletion imaging—a new imaging procedure and analysis method for semiquantitative ultrasonic perfusion imaging. Stroke 34(1):77–83, 2002CrossRefGoogle Scholar
  8. 8.
    Eyding J, Krogias C, Wilkening W: Parameters of cerebral perfusion in phase-inversion harmonic imaging (PIHI) ultrasound examinations. Ultrasound Med Biol 29(10):1379–1385, 2003PubMedCrossRefGoogle Scholar
  9. 9.
    Postert T, Muhs A, Meves SJF: Transient response harmonic imaging: an ultrasound technique related to brain perfusion. Stroke 29:1901–1907, 1998PubMedGoogle Scholar
  10. 10.
    Postert T, Hoppe P, Federlein JSH, Ermert H, Przuntek H, Büttner T, Wilkening W: Contrast agent specific imaging modes for the ultrasonic assessment of parenchymal cerebral echo contrast enhancement. Metabolism 20:1709–1716, 2000Google Scholar
  11. 11.
    Postert T, Hoppe P, Federlein J, Przuntek H, Büttner T, Helbeck S, Ermert H: Ultrasonic assessment of brain perfusion. Stroke 31:1460–1462, 2000PubMedGoogle Scholar
  12. 12.
    Seidel G, Kaps M, Greis C: Second harmonic imaging of a new ultrasound contrast agent (BY963): visualization of small cerebral arteries and analysis of regional cerebral blood flow. J Neuroimaging 7:230, 1997Google Scholar
  13. 13.
    Seidel G, Algermissen C, Kaps M: Harmonic imaging des Hirnparenchyms nach BR14 Bolusinjektion. Ultraschall in der Medizin 19:13, 1998Google Scholar
  14. 14.
    Wiesmann MGS: Ultrasound perfusion imaging of the human brain. Stroke 31:2421–2425, 2000PubMedGoogle Scholar
  15. 15.
    Nanda NCRS: Advances in Echo Imaging Using Contrast Enhancement, 1 edn. Norwell, MA: Kluwer, 1993Google Scholar
  16. 16.
    Noble JA: Ultrasound image segmentation: a survey. IEEE Trans Med Imag 25(8):987–1010, 2006CrossRefGoogle Scholar
  17. 17.
    Seidel G, Algermissen C, Christoph A, Claassen L, Vidal-Langwasser MTK: Harmonic imaging of the human brain: visualization of brain perfusion with ultrasound. Stroke 31:151–154, 2000PubMedGoogle Scholar
  18. 18.
    Vollrath A, Kier C, Meyer-Wiethe K, Seidel G, Aach T: Detecting stripe artifacts in ultrasound parametric images. In: Biomedizinische Technik, volume 50. Berlin: Fachverlag Schiele und Schön, 2005, pp 1235–1236Google Scholar
  19. 19.
    Feigenbaum H: Echocardiography, 5th edn. Philadelphia: Lea and Febiger, 1994Google Scholar
  20. 20.
    Grolimund P: Transmission of ultrasound through the temporal bone. In Aaslid R Ed. Transcranial Doppler Sonography. Berlin Heidelberg New York: Springer, 1986Google Scholar
  21. 21.
    Wei K, Jayaweera AR Firoozan S, Linka A, Skyba DMSK: Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion, volume 97. Berlin Heidelberg New York: Springer, 1998, pp 473–483Google Scholar
  22. 22.
    Seidel G, Algermissen C, Christoph A, Katzer T, Kaps M: Visualization of brain perfusion using harmonic grey scale and power doppler technology: an animal pilot study. Stroke 31:1728–1734, 2000PubMedGoogle Scholar
  23. 23.
    Metzler V, Seidel G, Meyer-Wiethe K, Wiesmann M, Aach T: Perfusion harmonic imaging of the human brain. In: Ultrasonic Imaging and Signal Processing, volume 5035. Proceedings of SPIE, San Diego, CA, 2003, pp 337–348Google Scholar
  24. 24.
    Martina AD, Seidel G, Meyer-Wiethe KEA: Ultrasound contrast agents for brain perfusion imaging and ischemic stroke therapy—instrumentation in practice. J Neuroimaging 33(1):1530–1537, 2005Google Scholar
  25. 25.
    Seidel GKMW: Harmonic imaging—Eine neue Methode zur sonographischen Darstellung der Hirnperfusion. Nervenarzt 72(1):600–610, 2001PubMedCrossRefGoogle Scholar
  26. 26.
    Kier C, Toth D, Schindler LA, Meyer-Wiethe K, Cangür H, Seidel G, Aach T: Cerebral perfusion imaging with bolus harmonic imaging. In Walker WF, Emelianov SY Eds. Ultrasonic Imaging and Signal Processing, volume 5750. San Proceedings of SPIE, San Diego, CA, 2005, pp 437–446Google Scholar
  27. 27.
    Wilkening W, Postert T, Federlein J, Kono Y, Mattrey R, Ermert H: Ultrasonic assessment of perfusion conditions in the brain and in the liver. In: IEEE Ultrasonics Symposium, San Juan, Puerto Rico, 2000, pp 1545–1548Google Scholar
  28. 28.
    Teague MR: Image analysis via the general theory of moments. Optical Society of America, 1979, pp 920–930Google Scholar
  29. 29.
    Reiss TH: Recognizing planar objects, using invariant image features. In: Lecure Notes in Computer Science, volume 676. Berlin Heidelberg New York: Springer, 1993, p 30Google Scholar
  30. 30.
    Jähne, B.: Digital Image Processing, 6th edn. Berlin Heidelberg New York: Springer, 2005Google Scholar
  31. 31.
    Jain AK: Fundamentals of Digital Image Processing, 1st edn. Prentice-Hall, New Jersey, 1989Google Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2007

Authors and Affiliations

  • Adam Maciak
    • 1
  • Christian Kier
    • 2
  • Günter Seidel
    • 3
  • Karsten Meyer-Wiethe
    • 3
  • Ulrich G. Hofmann
    • 2
  1. 1.CADMEI GmbHIngelheimGermany
  2. 2.Institute for Signal ProcessingUniversity of LübeckLübeckGermany
  3. 3.Department of NeurologyUniversity Hospital of Schleswig-HolsteinKielGermany

Personalised recommendations